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Abstract

Wireless Sensor Network (WSN) applications are prone to bugs and failures due to

their typical characteristics, such as extensively distributed, heavily concurrent and

resources restricted. It becomes critical to develop efficient debugging systems for

WSN applications. A flexible and generic debugger for WSN applications is highly

demanded. In this thesis, I proposed and developed a flexible and iterative WSN

debugging system based on sequence analyzing and data mining techniques. At

first, I developed vectorized Probabilistic Suffix Tree (vPST), a variable memory

length model to extract and store sequential information from program runtime

traces in compact suffix tree based vectors, based on original Probabilistic Suffix

Tree (PST). Then I built a novel WSN debugging system by integrating vPST with

Support Vector Machine (SVM), a robust and generic classifier for both linear and

nonlinear data classification. The vPST-SVM debugging system enables developers

to target at any hot spots they know might be problematic in the program source

codes. They simply need insert trace points into the hot spots, collect runtime

traces, then iteratively analyze the traces and finally locate real bugs. At last, I

studied three different test cases, two on LiteOS and one on TinyOS, to evaluate

the proposed WSN debugging system. It is demonstrated to be an efficient, flexible,

generic and portable WSN debugger by the case studies. In addition, the vPST-SVM

sequence analyzing methodology provides researchers with an inspiring angle of view

on extracting sequential features and obtaining meaningful insights from sequences

by appropriate transformation of sequential data.
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Chapter 1

Introduction

In the past decade Wireless Sensor Networks (WSNs) have been widely studied,

developed and deployed for various purposes, including surveillance, environmental

monitoring and data collection Kulakov and Davcev (2005), Kwon et al. (2004),

Langendoen et al. (2006). Intensive research has been conducted on WSN design

and development. However, WSN applications are still suffering from hidden bugs

and frequent failures Langendoen et al. (2006), Werner-Allen et al. (2006), due to their

typical characteristics, such as distributed architecture, concurrent execution model

and strict resource limitations. It is very difficult to perform efficient debugging on

WSN applications, because most of them are context sensitive and event driven. It is

usually infeasible to fully control their operating context and triggering events. As a

result, many WSN bugs are transient and irreproducible. Ramanathan et al. (2005)

It becomes a big challenge for current WSN researchers and developers to design and

develop a robust WSN debugging system that is able to efficiently detect hidden and

transient bugs.

The motivation of this thesis is to develop a robust and generic WSN debugging

system. Regarding diagnosis of WSN with transient and context sensitive bugs,

program runtime traces from real deployment are the most valuable data compared

to source codes and simulation traces, because they contain the most precious
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information of program runtime states and associated contexts in actual operations.

In fact, many transient WSN bugs can only be triggered by specific contexts.

Ramanathan et al. (2005) They can only be caught in program runtime traces and

logs, but can hardly be found in their source codes or simulations. In fact, most bugs

change program control flow during runtime. In most cases it is just the changing

of program control flow that leads programs to wrong states and yield unexpected

results. Jiang and Su (2007) So it is crucial to build a WSN debugging system that

can analyze runtime traces efficiently.

The most critical challenge in designing and building such a system is how to

extract and analyze sequential information from program runtime traces efficiently,

since program runtime traces are naturally sequences that can be collected during

runtime. To reveal hidden bugs, the debugging system needs to be able to obtain

meaningful insights from runtime traces. So it is necessary to build models that can

efficiently extract sequential information from sequences and represent it in compact

form that can be easily analyzed.

In this thesis, I designed, implemented and evaluated a flexible and generic

debugging system Lu et al. (2012) based on sequential data analyzing and outlier

detecting techniques, including two theoretical models, vectorized Probabilistic Suffix

Tree (vPST) and Support Vector Machine (SVM). Original PST model is a flexible

probabilistic model that can efficiently extract and store sequential information from

sequences in compact suffix tree data structure,Ron et al. (1996) while SVM is a

robust and generic classification technique that can solve both linear and nonlinear

classification problems.Aizerman et al. (1964) By extending PST to vPST, we are

able to not only retain sequential information but also significant substructures

within sequences in compact and simple vectors. SVM can be easily applied on

the vectors to detect outliers in the sequences. By combining vPST model and SVM

classifier together with an efficient tracing subsystem, I designed a flexible and generic

debugging system for WSN applications by iterative sequence mining.
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The contribution in this thesis is three-fold. First, I extended PST model

to vPST model and integrated it with SVM to make an robust outlier detecting

system that can not only efficiently extract sequential information from sequences,

but also can perform decent classification on them. The proposed vPST-SVM

sequence outlier mining system was demonstrated to be a novel and efficient

anomalous sequence detecting system. Second, the study on the system and its

performance by different test cases provided researchers on sequence analysis with

a new angle of view on methodology development of extracting and analyzing

sequential information. The vPST model gives researchers inspiration on exploring

new sequence analyzing approaches by breaking sequence into pieces and storing them

in some meaningful data structures for efficient analyzing. Third, the proposed WSN

debugging system was demonstrated to be a new and effective debugging system

suitable for WSN applications, especially for detecting transient bugs. The iterative

debugging approach was evaluated by showing prediction results from different test

cases developed on different operating systems with incremental changing of vPST

depth and iterative debugging cycles. These results shed light on WSN debugging

systems design and development for future researchers.

The following of this thesis is organized as follows. In chapter 2, I briefly

discuss wireless sensor networks debugging techniques, including proposed models

and systems. In chapter 3, I discuss background on sequence mining based debugging

techniques, including theoretical background on PST model and SVM classification

approach. In chapter 4, I describe details on the vPST model and the iterative

vPST-SVM anomaly detecting approach. In chapter 5, I describe the system design

and implementation. In chapter 6, I present three interesting test cases for system

evaluation. I demonstrate the robustness, flexibility and portability of our proposed

debugging system by the case studies. Chapter 7 is conclusions of this thesis with

some discussions.
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Chapter 2

Debugging Wireless Sensor

Networks

2.1 WSN Debugging Techniques

There are numerous debugging techniques proposed and developed over the past

decade. Li and Regehr (2010); Sasnauskas et al. (2010); Zhou et al. (2010) The various

WSN debugging techniques can be classified based on their usage in application life

cycle as pre-deployment, deployment-time and post-deployment validation, or based

on their implementation strategies as software-based, hardware-based and hybrid.

Sreedevi and Sebastian (2012); Schoofs et al. (2012).

Pre-deployment debugging tools are used for debugging WSNs prior to actual

deployment. There are software debuggers, software simulators, software emulators,

and testbeds. Deployment-time tools validate system functionality at the time of

deployment to lower the risk of early failures. SeeDTV Liu et al. (2007) is an example

of deployment-time tool that minimizes requirement of revisiting deployment contexts

which are composed of environmental states that are difficult to replicate. Post-

deployment debugging tools are used for debugging WSNs post actual deployment.

Such tools collects and analyze information from program runtime such as packets
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sent and received between different nodes, program execution logging and tracing

data and etc.

Different debugging tools use different implementation strategies in practical

applications. Some debugging tools are software-based, such as software simulators

and software emulators. Some debugging techniques are implemented on real

hardware, including some record and reply debugging techniques. There are also

many debugging techniques implemented as a hybrid of both software and hardware.

2.2 Logging and Symptom Mining

In this thesis, I mainly focus on analyzing program runtime traces from post-

deployment WSN applications by software-based implementations. First of all,

program runtime logs and traces contain the most valuable program execution and

contextual details. Such runtime details are the most important sources for detecting

bugs and root causes of those bugs. In WSN applications, there are many transient

bugs that can hardly reproduced or replicated due to rare occurence of their triggering

contexts. So recorded program runtime traces become the most reliable sources for

studying these transient bugs once triggered. Secondly, program runtime traces

generated from real deployment under real environmental conditions and contexts

may be difficult to be replicated from pre-deployment simulations of emulations,

because people may not have enough prior knowledge of triggering conditions and

contexts for replicating some bugs under study. Compared with pre-deployment

simulations and emulations, post-deployment runtime traces provide much more

objective information on program execution and behaviour.

Even there are many different debugging systems designed and developed, there

is still a significant lack of efficient program runtime trace debugging system that

can fully take advantage of runtime traces from real deployment. Some of them were

designed with very low portability due to their limitation to specific operating systems

Zhou et al. (2010); Li and Regehr (2010). Some others of them were restricted to
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source code analysis or simulation trace analysis Li and Regehr (2010); Sasnauskas

et al. (2010). There are many tricky bugs caused by race conditions or inappropriate

controlled concurrencies that can only be triggered in real deployment under some

specific circumstances. Also, there are many different types of WSN applications

developed based on many different well developed WSN operating systems, such

as TinyOS, LiteOS, Contiki and etc. Thus, a flexible, portable and generic WSN

debugging system that can work efficiently with different WSN operating systems is

highly demanded. Following is a brief discussion of two representative debugging

systems based on logging and symptom mining to reveal the most significant

limitations of recently proposed trace analyzing based WSN debugging systems.

Dustminer Khan et al. (2008) is a debugging system based on frequent patterns

mining. Its data collecting front-end performs runtime logging by collecting events

from distributed sensors within a network. Then it takes predefined “good” patterns

and “bad” patterns by application developers to separate the collected data into

two piles, a “good” pile and a “bad” pile. Consequently, its data analysis back-end

applies frequent patterns mining approaches to detect frequent subsequences in both

piles. Finally it tries to identify the probable causes of failures by comparing frequent

patterns between “good” piles and “bad” piles. There are three significant drawbacks

of this approach. First of all, it is based on and limited to frequent patterns mining. So

for those failures or bugs that could only be triggered by some rare events, obviously

Dustminer will fail to detect them since this kind of bugs can only generate infrequent

patterns. Secondly, it requires a lot of human effort from application developers to

figure out clear definitions of “good” patterns and “bad” patterns for data training.

As a matter of fact, before the bug is found, it is usually not practical to define

clearly what are “good” patterns and what are “bad” patterns. So the large amount

of overhead caused on developers practically makes it difficult to apply this approach

in actual application development. Third, frequent patterns mining is usually very

expensive if the sequence is long.
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Sentomist Zhou et al. (2010) is another interesting debugging system designed for

WSN applications. It was specifically designed for TinyOS applications. It collects

TinyOS application runtime traces from simulations by a complicated procedure.

Initially, it partitions collected traces into smaller event handling intervals, which

is only valid on TinyOS. Then it analyzes instruction counters of all of such event

handling intervals. By one-class SVM classifier, it sorts all collected event handling

intervals based on the probabilities they are abnormal or normal. This debugging

system suffers from several major drawbacks. At first, it is strongly restricted to

TinyOS operating system. Its event handling interval model is specifically based on

event-driven execution mechanism of TinyOS. Secondly, it can only collect application

execution data from simulations. In fact, there are many bugs that can only be

triggered in actual deployment by specific environmental conditions, but not in

simulations. Thirdly, it uses only instruction counters, so all sequential information

is totally ignored. For example, two different sequences (1, 1, 2) and (2, 1, 1) can be

considered identical if they are converted to instruction counters, both of which are

(1:2, 2:1). In addition, even Sentomist finally marks some event handling intervals

that may contain bugs with very high probabilities, it is still too hard for a developer

to manually check a sequence with possibly several hundreds of instructions. It is

unrealistic for human being to manually check those long sequences.
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Chapter 3

WSN Debugging by Sequence

Mining

3.1 Sequence Mining and WSN Debugging

As discussed in previous chapter, this thesis is focused on analyzing WSN application

runtime traces from post-deployment to detect hidden bugs and failures. Those

runtime traces are naturally sequences of execution of program source codes.

Therefore, the problem of debugging WSN by analyzing runtime traces reduces to a

more abstract problem of detecting anomalies from sequences, i.e. a typical sequence

mining problem. How efficiently a sequence mining system can detect anomalies in

collected runtime traces directly determines how efficiently this system can be used

as a WSN debugger.

In principle, an efficient and effective sequence mining based debugging system

need be able to play two functional roles very well. At first, it should be able to analyze

and extract sequential information within sequences efficiently. Secondly, it should

be able to differentiate anomalous sequences from normal ones reasonably well to be

qualified as an effective WSN debugger. The two currently proposed WSN debuggers,

Dustminer and Sentomist reviewed in previous chapter are the two most interesting
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sequence mining based WSN debuggers proposed in past years. Dustminer debugs

WSNs by mining frequent patterns within program runtime logs, while Sentomist

debugs WSNs by detecting anomalous subsequences from program simulation traces

by transforming subsequences into instruction counters. Both systems work for some

cases. However, neither of them optimally take advantage of sequential information

within program traces or logs. Frequent patterns mining is very expensive, and

instruction counters ignore sequential information within subsequences. In this thesis,

an innovative sequence mining and analyzing approach is proposed to build a more

robust WSN debugging system.

3.2 Theoretical Background

Classical PST model Ron et al. (1996) and SVM classification model Vapnik (1995)

are two fundamental models of the proposed debugging system. PST is an adaptable

statistical model that generalizes Markov Chain model. It takes as many events as

needed to build a suffix tree based on conditional probabilities of finding some events

after a given event sequence. This probabilistic model is more realistic and general

than traditional Markov Chain model, which ideally assume any event has only

effects on its adjacent neighbor. By building probabilistic suffix trees from collected

sequences, much sequential information is conserved and can significantly improve

following analysis. SVM is a well-developed and remarkably robust classification

technique. It is very powerful with respect to sparse, noisy and high-dimensional

data. Most importantly, it is a generic classifier suitable for both linear and non-linear

classifications. It is widely used for various classification cases from text categorization

in natural language processing to protein function prediction in biological science. Its

robustness and generic property make it an ideal choice for our debugging system

design.

9



3.2.1 Probabilistic Suffix Tree

PST model was first proposed in 1996 Ron et al. (1996). In the past 15 years, it

has been widely used for modeling various complex sequences, including biological

sequences and temporal sequences Leonardi (2006); Liao and Noble (2003); Christine

(2003); Mazeroff et al. (2008). As discussed in Ron’s seminal paper Ron et al. (1996),

PST is fundamentally a probabilistic model with variable memory length for modeling

sequences. It is based on a well-accepted observation of sequential data that, given

proceeding subsequence with a length L larger than some fixed value, the probability

distribution of the next symbol does not change significantly. This is also known as

short memory property of sequential data. The length L is usually called memory

length. In practice, the memory length is variable for different sequences. As a result,

PST model can adaptively extract sequential information from sequences based on

their memory length.

Given a sequence of symbols from an alphabet, a PST can be built based on

probabilities of each symbol conditioned on different proceeding subsequences. The

data structure will be a classical suffix tree. Each node of the tree contains two

types of information, a sequence of symbols and a vector composed of conditional

probabilities of each possible symbol in the alphabet proceeded by the sequence. The

sequence of a node is generated from its parent node by taking its parent’s sequence as

it suffix. That is the reason why it is called Probabilistic Suffix Tree. The root of the

PST is built by calculating unconditional probabilities of each symbol of the alphabet.

Nodes on subsequent levels are built by growing sequences from their parent nodes

and calculating probabilities of each symbol proceeded by corresponding sequences of

the nodes.

Figure 3.1 shows a PST to depth 2 that is constructed from a given sequence (1 3

2 2 3 2 1). All shadowed nodes are with subsequences that appear at least once in the

given sequence, while white nodes are empty with no occurrence of the subsequences

on them. There are 3 distinct symbols in total, 1, 2, 3. The last element 1 in the
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sequence is excluded in PST construction because it cannot be a prefix of any other

subsequences, but always be a suffix of some other subsequences. On root node,

probability vector is calculated based on unconditional probabilities of each symbol

in the sequence. There are 1 occurrence of symbol 1, 3 occurrences of symbol 2 and 2

occurrences of symbol 3 out of total 6 instances. So the resulting probability vector is

(1/6 3/6 2/6). After construction of root, first order of PST nodes can be constructed.

For example, on node 2, symbol 2 followed by symbol 1 once, followed by symbol 2

once and followed by symbol 3 once, the resulting probability vector thus is (1/3 1/3

1/3). PST of this sequence can grow deeper until the longest subsequence, which is

the whole original sequence itself is reached. More detailed description on building a

PST could be found in references Ron et al. (1996) and Mazeroff et al. (2008).

There are several important advantages of PST. First, PST is actually a

generalization of Markov Chain model by extending chain length to some predefined

value L. So it is basically a generic probabilistic model that can be applied on

1

Root

2 3

(1/6, 3/6, 2/6)

3_22_2 3_32_3

(0/1, 0/1, 1/1) (1/3, 1/3, 1/3) (0/2, 2/2, 0/2)

(0/1, 0/1, 1/1)(1/2, 1/2, 0/2)(0/1, 1/1, 0/1)

(0/1, 1/1, 0/1)

2_1 3_1

1_2 1_31_1

Figure 3.1: Probabilistic Suffix Tree
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sequential data. For its utilization on WSN applications, developers could generate

any sequences he/she thinks might be relevant, such as function call sequences,

instruction sequences, trace point sequences, and etc. Our system will be able to

analyze all of such sequential data based on PST model. Second, PST can be used

to retain sequential information as much as needed to achieve expected prediction

accuracy by adapting it to the specific application in study through memory length

adjustment.

3.2.2 Support Vector Machine

The basic idea of SVM is to construct an optimal hyperplane to separate different

patterns. By taking advantage of a technique called kernel trick, which was first

published by Aizerman et al., Aizerman et al. (1964) SVM can efficiently classify

both linearly separable and nonlinearly separable data. It transforms original data

from low-dimensional space to high-dimensional space so that a hyperplane could

be constructed, and the data can be easily separated. A main advantage of SVM

is its ability of analyzing high-dimensional data, which perfectly matches the need

of analyzing PST vectors derived from program runtime traces in following WSN

debugging system.

One-class SVM Schlkopf et al. (2001) is a variant of SVM that is suitable for outlier

detection in a data set with majority of normal data points. Initially it assumes all

data points belong to one class, i.e. normal class. Then it finds optimal hyperplane

that can represent majority characteristic of the given data set. Based on the optimal

hyperplane, majority of the data points that are within one side of the hyperplane are

classified as normal, while the remaining data points that are on the other side are

outliers. In principle, the relative position between a data point and the hyperplane is

a reasonable indicator of the possibility that it is an outlier. The further it is from the

hyperplane and on the normal side, it is more likely it is not an outlier. Meanwhile,

the further it is from the hyperplane and on the abnormal side, it is more likely it is
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an outlier. So the relative position of a point with respect to the hyperplane can be

regarded as an anomaly score that indicates its likelihood of being an outlier. This

is how the anomaly scores of all WSN program runtime traces are quantitatively

calculated from SVM analysis in the WSN debugging system proposed in this thesis.
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Chapter 4

Vectorized Probabilistic Suffix Tree

4.1 Limitations of Traditional Probabilistic Suffix

Tree

Traditional PST model is an excellent probabilistic model that can represent

sequential information within sequences in well-structured suffix trees. However,

analyzing PSTs is always challenging, because PSTs constructed from different

sequences usually have different structures. For example, how basic analysis like

similarity estimation of PSTs with different structures can be determined. In the past

decade, different approaches were proposed to analyze similarities between different

PSTs Sun et al. (2006). Given two sequences S1 and S2, most proposed approaches,

such as the Odds and the Normalized measure Sun et al. (2006), calculate their

similarity based on pure statistic analysis, which is estimation of probabilities of

deriving S1 from S2 by estimating probabilities of deriving subsequences of S1 from

S2. In other words, these statistics-based analyzing approaches mostly rely on statistic

estimation of occurring probabilities of one sequence given occurrence of another one

based on occurrence of shared subsequences. Basically, absolute structural similarities

are not taken into primary consideration. In fact, probability of deriving one sequence

from another is not necessarily equivalent to their absolute structural similarity
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but correlation of their conditional possibilities of occurrence of one another. It

is plausible to use such probability-based similarities in comparing sequences in some

situations, such as program runtime trace analysis for detecting bugs, because non-

shared subsequences of difference sequences are ignored.

4.2 Vectorized Probabilistic Suffix Tree

My proposed Vectorized Probability Suffix Tree(vPST) solved above mentioned issue

from an new angle of view. It evaluates similarities of different sequences by

taking every elements and all possible subsequences up to predefined length into

consideration, not just shared subsequences. As is known right now, there is a

probability vector on each PST node, which is composed of conditional probabilities

of every symbol occurs after the given symbol subsequence of that node. For those

subsequences with no occurrence, we can still construct corresponding nodes by

putting zeroized vectors on them. In this way, we can construct full PSTs to some

predefined depth. Then all these PSTs can be vectorized by combining all separate

vectors on all nodes. Take PST in Figure 3.1 for example. It is a full PST with all

nodes up to length 2. A vector can be constructed from this PST by sequentially

combining probability vectors on all nodes in the order (root, 1, 2, 3, 1 1, 2 1, 3 1, ...,

3 3) as shown in Figure 4.1. In practice, the vectors constructed from such full PSTs

even with just a small depth can be very sparse because many nodes may have zero

occurrence. Fortunately, the sparse vectors can be compressed by removing zeroized

nodes that occur in all PSTs. As a result, a set of standard and uniform vectors can

always be constructed from some given set of sequences following the procedure.

Analyzing vPST is much easier than analyzing PST. First, analyzing vectors

is much easier than analyzing suffix trees. Absolute structure based similarity

estimation of two vectors is more straightforward than that of two suffix trees

by simple calculation of Euclidean distances between vectors. Second, the most

interesting sequential information and substructures within the sequences can be
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retained very well by vPST vectors as by PST, but in simpler data structure. SVM

can be applied directly on vPST vectors for outliers detection.

4.3 vPST-SVM Iterative Debugging System

A natural advancement of vPST is to integrate it with a robust classification approach

SVM, which is powerful on analyzing high-dimensional data. As a result, we

developed vPST-SVM sequence analyzing approach and demonstrated its efficiency

by applications in our WSN debugging system. Detailed steps of the iterative vPST-

SVM debugging process are listed below.

1. Construct PSTs from given sequences.

2. Vectorize PSTs to generate vPST vectors.

3. Apply SVM on vPST vectors to obtain a short list of top anomalous sequences

(usually 10 to 20 sequences) based on calculated anomaly scores.

1Root 2 3

(1/6, 3/6, 2/6)

3_2

2_2

3_32_3

(0/1, 0/1, 1/1) (1/3, 1/3, 1/3)(0/2, 2/2, 0/2)

(0/1, 0/1, 1/1)

(1/2, 1/2, 0/2) (0/1, 1/1, 0/1)(0/1, 1/1, 0/1)

2_1 3_1 1_2

1_3

1_1

(0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0)

Figure 4.1: a Vectorized Probabilistic Suffix Tree
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4. Developer checks the short list of anomalous sequences to confirm them as

anomalies or bugs.

5. Learn from identified anomalies by removing confirmed anomalies and go back

to step 3.

6. Stop until enough bugs are detected and confirmed.

In the debugging process, vPST depth is a significant parameter that can be

tuned adaptively for efficient bugs detection. It can be increased for tricky bugs

that are hard to be detected by low-depth vPSTs, meanwhile it can be decreased for

simple bugs that are easily detectable to save resources and improve efficiency. In

principle, the larger the vPST depth is, the more sequential information is extracted

and retained from sequences, and bugs are more likely to be covered by collected

patterns in vPSTs. However, increasing of vPST depth also leads to more expensive

computing in following analyzing. As is known to all of us, vPST size increases

exponentially as its depth increases. So too large of vPST depth is not practical in

actual sequence analysis. Fortunately, sequences have short memory property, which

can guarantee vPSTs with reasonable low depth can still cover majority of sequential

information with sequences. In our case studies, reasonable debugging results were

obtained even we only explored vPSTs with depth no larger than 5. It indicates

for our debugging purpose, a memory length of 5 is enough for retaining majority

sequential information from runtime traces.

The vPST-SVM debugging system can iteratively learn from identified anomalies

and confirmed bugs by taking feedback from developers. This learning process is

simple but very efficient on debugging. It will be demonstrated by test cases. The

vPST-SVM system is basically an anomaly detecting system. What it is good at is

finding outliers from all input sequences. But not all outliers are necessarily caused by

software bugs. With a little feedback from developers by telling the system which top

outliers detected are just anomalies, the system can be quickly improved for better

bugs detection in following iterations.
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The computational complexity of the iterative vPST-SVM debugging process is

mainly determined by construction of PSTs and application of SVM on the vPST

vectors. The former is approximately O(Ln log n) based on ref Mazeroff et al. (2008),

where L is total number of sequences in study and n is average length of all sequences.

The latter is approximately O(LnSV +nSV
3) based on ref Keerthi et al. (2006), where

nSV is total number of support vectors. So the total computational complexity of

iterative vPST-SVM debugging approach is approximately O(N(Ln log n + LnSV +

nSV
3)), where N is number of iterations.
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Chapter 5

vPST-SVM Debugger Design and

Implementation

5.1 System Design

The system design follows three principles. First, the system needs to be simple

and easy to use. The basic motivation of this project is to design and build a

powerful debugging tool to ease developmental process by assisting developers in

actual testing and debugging processes. So the debugging system should be able to

save the effort of developers in practical development. Too much overhead, such as

high learning curve or complicated debugging procedure is not preferred. Second,

the debugging system needs to be portable. As discussed earlier, a significant issue

with many proposed systems is their low portability. Most of the proposed debugging

systems were designed and restricted to some specific applications or some specific

WSN operating systems. They require significant amount of effort for developers to

adapt the proposed debugging systems to different applications or different operating

systems. Thus, the proposed system needs to be portable and independent on

WSN operating systems and applications. Third, the debugging system needs to

be adaptable and flexible. As a matter of fact, some bugs might be very easy to be
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detected, while some other hidden ones might be difficult to be found. According

these different situations, the debugging system should be able to be adapted to go

through simple and fast bugs detecting process or a little slower but more powerful

bugs detecting process. It will save effort of developers and computing resources.

The WSN debugger is composed of five components as shown in Figure 5.1, a

runtime trace collector, a preprocessor, a vPST analyzer, a SVM classifier and a

developer or developer group. In the front end, the trace collector generates and

collects program runtime traces based on trace points in hot spots of applications. In

the back end, the preprocessor, vPST analyzer and SVM classifier work coordinately

to detect the most anomalous subsequences in collected traces. The preprocessor

filters out noises and uninterested data, compresses the raw data and reduces data

dimensionality by preliminary sequential analysis. The vPST analyzer analyzes all the

collected runtime traces and extracts the sequential features from traces by vPST.

The SVM classifier performs classification based on vPST vectors obtained by the

vPST analyzer. Finally developers come to play their roles in the system, they give

their feedback back to the system after manually reviewing several very top anomalies

in the list. Based on feedback provided by developers, the system iteratively evolves

and improves its debugging performance.

In debugging process, a developer initially inserts some trace points wherever

he/she thinks the problem might be located according to his/her knowledge of the

application source code at that time. Then he/she can run the application in

either real deployment or virtual simulations. The only overhead introduced here

is collection of a trace during runtime, which is usually very small. After some

traces collected, vPST analyzer will analyze the traces and create vPST vectors

for each subsequence. Then generated vPST vectors are fed to SVM classifier for

anomaly detection. The proposed vPST-SVM debugging system works adaptively

and iteratively. Initially SVM just analyzes the root nodes of vPSTs. If bugs can

not be detected, the system either takes feedback from developers, removes identified

anomalies, iteratively perform more cycles of debugging or simply goes to deeper PST
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nodes. The iteration continues until bugs are found and confirmed. By this adaptive

debugging procedure, we avoid wasting unnecessary resources.

Overhead for developers of using this debugging system mainly comes from

identifying hot spots in the source codes and determining where to insert trace points.

Based on our experience of actual WSN development, for most of the cases when a

developer encounters some problems with his/her application development, he/she
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Figure 5.1: System Architecture
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intuitively have some sense that some parts of the source code are most probably

causing the problem, even he/she is not sure exactly what it is. These problematic

blocks of codes are called hot spots. Based on this assumption, I designed the system

so that it can be targeting hot spots in the source code. By concentrating on such

hot spots, we significantly reduce collected data and simplify problems. Even for the

worst cases when the developer is not familiar with the source codes, and does not

have prior knowledge of hot spots in the source codes, he/she can still just insert trace

points randomly in the source codes. Following preprocessing of the collected traces

can identify hot spots composed of trace points with unstable sequential patterns

and consolidate those trace points that always form very stable sequential patterns.

The reasoning behind this is, hot spots usually generate messy execution traces with

many problematic sequential changes while normal code blocks usually generate very

stable execution traces without too many changes.

The debugging system is independent on any specific applications or WSN

operating systems. Empirically different kinds of WSN applications usually have

different types of typical hot spots. For instance, environmental monitoring

applications typically have data collection and transmission codes that are prone

to contain bugs. So such codes could be potential hot spots in them. For a developer

with experience and prior knowledge of the applications, his/her experience is very

helpful to reduce overhead of identifying hot spots. If he/she is not experienced of is

not familiar with the source codes, there will be some overhead of preprocessing and

analyzing runtime traces to locate hot spots. But the overall overhead is significantly

reduced by automated trace analyzing.
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5.2 System Implementation

5.2.1 Trace Collector

The program runtime trace collector is a front-end data collecting component to

collect and store program runtime traces at source code level. Runtime traces are

generated by inserting trace points into hot spots in application source codes. For

different WSN operating systems, the trace collector need be customized to adapt

the corresponding printing service, which is usually a trivial task since most well-

developed WSN operating systems have carefully developed printing services and

well documented APIs.

In our test case studies, we built lightweight and simple tracing subsystems on

both LiteOS and TinyOS. Trace points are simply some distinct numbers that are

printed out when at runtime program reaches. The trace points actually compose

a simple representation system of program execution sequences. On LiteOS, all the

trace points were printed out and sent to desktop computer through serial port via

USB cable by using pre-implemented printing functions in libserial.c printing library.

On TinyOS, the existing printf library was used to send runtime traces to desktop

computer through serial port.

5.2.2 Preprocessor

The sequence preprocessor cleans up collected raw data, compresses those sequences

and reduces data dimensionality. Initially, all trace points are inserted into source

codes somehow arbitrarily based on the choices of developers. Plenty of information

in the collected traces might be useless or redundant. For example, if symbols 1, 2

and 3 always occurs as a whole block “2 1 3” and not any one or two symbols out

them occur in different format, we can combine symbols 1, 2 and 3 as a single new

symbol and replace the “2 1 3” blocks. By searching and combining these invariant

blocks, the dimensionality of original sequences can be reduced. The compression

23



can improve following sequence analyzing and debugging performance. The sequence

preprocessor was implemented in C++.

5.2.3 vPST Analyzer

The main functionality of the sequence analyzer is to extract sequential features

from collected data. In principle, there could be huge amount of tracing data

collected even after some preprocessing and compressing. It becomes a challenge

to extract the most important features from those data. We extended PST to vPST

to efficiently extract sequential information from sequential data. We implemented

vPST sequence analyzer in C++ for efficiency consideration, since C++ is usually

faster than other high level languages, such as Java, Python and etc. The implemented

PST construction algorithm followed published algorithm by Ron et al. Ron et al.

(1996). PST vectorization followed our description of vPST earlier. The whole vPST

sequence analyzer can adaptively extract sequential information from given sequences

and store all the information into compact vPST vectors up to given PST depth L.

5.2.4 SVM Classifier

Sequence classifier is a key component of the WSN debugging system. The

fundamental principle behind the proposed debugging system is to detect bugs by

automatic anomaly detection. Thus, the key functionality of the system is anomaly

detection. In other words, the system need be able to classify normal behaviors and

abnormal behaviors efficiently. So a robust classifier is necessary for the system to

find out the most probable buggy patterns. In recent decades, there are plenty of

classification models and algorithms developed for efficient classification, including

k-Means, k-nearest-neighbors, SVM and etc. Among these algorithms, SVM is a very

robust and generic classifier that can work high-dimensional data, including both

linear and nonlinear data. So we chose SVM in the debugging system implementation.
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In the debugging system, SVM classifier was built by using a well-developed SVM

library LIBSVM Chang and Lin (2011). It was implemented in C++ and took the

most advanced computing techniques to achieve its excellent performance. We used

both of the Java version and C++ version of it in our experiments. There is no

significant difference in their performance.

5.2.5 Developers

Developer is taken into serious consideration in the system design as a system

component, because in the proposed debugging system, what computer programs

perform are detecting outliers from collected traces, but they can hardly determine

which outliers are generated by bugs, and which are from correct but unusual

execution. In fact, there might be many outliers generated by normal program

execution, but not bugs. Real human being has to take the responsibility of

determining whether or not a detected outlier is a bug. Therefore, a developer is

an indispensable component of the debugging system. It should be emphasized that

adding developer into the system is not to increase his/her burden in development

process, but the opposite. Results in test cases will show how a little feedback from

developers can significantly improve bugs detecting ability of the debugger in an

iterative debugging process.

The roles played by a developer in the debugging system are both a user and

a supervisor. First, a developer is a user of the debugger in real WSN application

development. Second, a developer is a supervisor and a decision maker of the debugger

during the debugging process. Basically, outlier detection algorithms can hardly

identify or understand underlying bugs. What the algorithms can obtain is a list

of the most problematic runtime subsequences, but not identified bugs. Valuable

feedback from real developers is significant to enable the system to learn and improve

its prediction performance iteratively. As a result, it is the combination of machine

intelligence and human intelligence that makes the debugging system intelligently
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evolve to help developers locate real bugs in WSN applications by going through

debugging cycles iteratively. The functionality of a developer as a supervisor is to

tell the debugger which outliers in the top list are not from bugs and which outliers

are from real bugs by manual check of the very short list of top anomalous sequences

detected. By such iterative learning, the debugger can achieve much better prediction

results in following iterations.
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Chapter 6

Evaluations

The proposed debugging system is evaluated by three test cases, one on TinyOS

and two on LiteOS. For simple bugs with obvious buggy symptom, like the variable

overflow bug in a LiteOS application, a single iteration of vPST-SVM debugging with

just a few adjustment of vPST depth can clearly reveal bugs. For those tricky bugs

without obvious buggy symptoms, like the race condition bug on TinyOS, several

iterations with a little feedback from developers can detect and confirm hidden bugs

in runtime traces very well.

6.1 Test Case I: a variable overflow bug in a LiteOS

application

In this test case, a LiteOS application that transfers packets between different nodes

was developed based on a simple reliable data transfer protocol. Before the bug was

found and fixed, we did not have any prior knowledge of any hidden bugs in the

application. So the test case studied here was actually a real debugging process of an

actual development of a WSN application.

This is basically a simple application that wants to reliably collect data from

different senders. In deployment, several sender nodes continuously send radio packets
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Table 6.1: Bug 1 trace analyzing results

PST depth False Alarms False Positive Rate
0 8 10.26%
1 2 2.56%

to a single receiver node. When received a packet, the receiver always sends back an

ACK packet to the sender to notify that the packet has been successfully received.

For each sender node, after sending out a packet, it always waits a while for an

ACK. If an ACK is not received on time, it just resends the packet. Only after

an ACK is successfully received, a new packet will be sent out. There were still

a few interesting bugs coming out during the development process of such a simple

application. Following debugging process of a variable overflow bug shows how vPST-

SVM debugging system could help developers to find and fix WSN bugs efficiently.

The application with the bug looked running normally. No obvious failures. 500

sequences were collected during runtime. vPST-SVM analyzer identified two distinct

classes in the trace. One class with repeated patterns, which is “1 2 6 1 3 5 6”,

started from the 79th subsequence in the trace. This pattern repeated after the

application had been running for a little while. Most probably, it was caused by a

bug. after further checking this pattern, we found when the bug was triggered, the

1: /* sender node */

2: while (1)

3: {...

4: if(AckReceived && !MsgSent ){

5: ...

6: lib_radio_send_msg (...);

7: }

8: else if(! AckReceived && MsgSent ){

9: lib_radio_receive_timed (...);

10: // Bug #1

11: PacketID =256* Buffer [1]+ Buffer [0];

12: }

13: }

Listing 6.1: Bug 1 source code
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sender would just repeatedly resend the same packet forever. On the receiver, the

same packet was always dropped. By checking the source code that generated the

corresponding pattern, we finally confirmed and located the bug within pattern “1

3 5 6”. The simplified source code is show in Listing 6.1. It was due to a variable

overflow. In the code, both PacketID and Buffer[] are defined as 16-bit arrays. But

number “256” is a literal number. In compilation, the calculation of 256*Buffer[1]

with 16-bit variable and literal number mixed could be compiled in some undefined

way. In my experimental setting, when Buffer[1] becomes 3 or larger, the product

would be reset to 512. As a result, PacketID would never exceed 512. So the receiver

would always think it just has received a very old packet and keep dropping it.

This is a simple bug with obvious symptom in runtime trace, a single iteration

of vPST-SVM debugging with simple adjustment of vPST depth to 0 and 1 can

differentiate buggy patterns very well. The classification results is shown in Table

I. The false positive rate decreased from 10.26% to 2.56% when vPST depth was

increased from 0 to 1. There were 8 false alarms in total 500 sequences classified by

the vPST-SVM debugging system when vPST depth was set to 0, meanwhile only 2

false alarms when vPST went just one level deeper. The results clearly demonstrated

significant improvement could be achieved on prediction performance by taking deeper

vPST in the analysis. Deeper vPST means more sequential information was extracted

and analyzed by SVM. It shows strong indication that more sequential information

included in deeper vPST could help SVM to find hidden bugs more efficiently.
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1: /* Thread 1 */

2: /* receiver node */

3: while (1)

4: { lib_sleep_thread (1000);

5: if(AckSent && !MsgReceived ){

6: lib_radio_received_timed (...);

7: ...

8: fromnodeid = incomingMsg [2];

9: if(thisPacketID >= lastPacketID ){

10: lastPacketID = thisPacketID;

11: AckSent = false;

12: MsgReceived = true;

13: }

14: }

15: }

16: ...

17: /* Thread 2 */

18: /* receiver node */

19: while (1)

20: { lib_sleep_thread (1000);

21: if(MsgReceived && !AckSent ){

22: ...

23: // Bug #2.

24: AckSent = true;

25: MsgReceived = false;

26: ...

27: lib_radio_send_msg (...);

28: }

29: }

Listing 6.2: Bug 2 source code
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6.2 Test Case II: a race condition bug in a LiteOS

application

In this test case, a WSN bug with a common root cause, race condition, was analyzed

by the vPST-SVM debugging system. Similar functionality as the application in test

case I was implemented in multi-threaded mode. There are two application threads

on each sensor node, one for sending packets, the other for receiving packets. On

a sender, one thread is responsible for sending packets, the other one is responsible

for receiving ACKs. On the receiver, one thread is responsible for receiving packets

sent by senders, the other one is responsible for sending out ACKs to corresponding

senders. The two threads share four system state variables as shown in the source

code in Listing 6.2, MsgSent, MsgReceived, AckSent and AckReceived, which define

finite system states of each node. The application was deployed on 5 different micaZ

nodes, 1 receiver and 4 senders. 4 senders were keeping sending messages to the

receiver. The receiver sent back ACKs to corresponding senders after it received a

message.

A possible failure could be caused by incorrect changing of state variables by one

of the two threads. Since both threads have equal access to all system state variables,

each thread could change system states by modifying the state variables. In actual

execution, the two threads are running in interleaved manner. A failing scenario

of the bug studied is as following. Thread B changes system variable AckSent and

MsgReceived at line 24 and 25, but before it sends out AckMsg, the thread gives CPU

to thread A. When thread A receives a new message from a different sender node and

updates fromnodeid on line 8, the bug is triggered. When the CPU is given back to

thread B, acknowledgment will be sent to a wrong sender because fromnodeid has

been altered. In practical deployment, the bug can be triggered randomly. As a result,

buggy subsequences will be sparsely distributed in majority of normal subsequences.

It will be difficult to manually check thousands of subsequence to determine if there

is something wrong.
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Table 6.2: Bug 2 trace analyzing results

Sequence Anomaly Score Bug/Anomaly
3033 -4.5467 Anomaly
3070 -4.5467 Anomaly
642 -1.073 Bug
3372 -1.073 Bug
1112 -1.0217 Bug
3144 -1.0217 Bug
380 -1.0002 Bug
... ... ...

In the experiments, 15 total trace points were inserted into source code. Runtime

traces were collected and partitioned into subsequences every time thread B ran to

a completion. Some inappropriate interleaved execution of thread A and thread B

caused bugs. 3400 subsequences in total were collected and analyzed. A single vPST-

SVM iteration was conducted with several vPST depth adjustments. Anomaly scores

were calculated according to relative positions of data points to found hyperplane.

The results ordered by anomaly scores from vPST-SVM analyzing with vPST depth

of 5 are shown in Table II. The lower the anomaly score is, the more likely the

corresponding subsequence contains bugs. Out of the total 3400 subsequences, there

are 5 confirmed bugs within the top 7 anomalies. The first 2 most anomalous

subsequences, 3033 and 3070 were not caused by bug but were indeed anomalous

sequences that contain the shortest trace points sequence of a thread A cycle and

a thread B cycle. Bug they are indeed anomalies compared with majority of other

subsequences.

6.3 Test Case III: a race condition bug in a TinyOS

application by iterative debugging

The third test case was developed on TinyOS 2.x operating system based on TestFtsp

application. In source code of CC2420ReceiveP.nc we added some additional code to
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Table 6.3: Bug 3 trace analyzing results

vPST depth 0 1 2 3 4 5
Iteration Bugs Detected

First 0 0 0 2 2 1
Second 0 1 2 2 3 5
Third 0 4 3 3 5 5

collect runtime information of the program. As shown in following the pesudo code

in Listing 6.3, temporary runtime data of CC2420ReceiveP component is stored in

array tmpdata[]. After tmpdata[] is ready with enough data, it will be copied to

array tracedata[] and a task sendtrace will be posted to process the collected data.

There is a potential race condition bug in this superficially simple application even

both of the data collection and processing codes are protected by atomic blocks. At

some cases, if the operating system is busy doing something else, before previously

collected tracedata is processed in task collecttrace(), new tmpdata may be ready and

replaces old data in tracedata. As a results, such missing data can never be collected.

In this application, the missing data is very important because it contains program

runtime information when the program is busy doing something unexpected, which

is crucial in studying detailed program behavior.

1: task void collecttrace (){

2: sendtrace(tracedata );

3: printf(" 23\n");

4: ...

5: }

6: ...

7: somefunction (){

8: tmpdata [] = ...;

9: if(tmpdata is ready){

10: tracedata []= tmpdata [];

11: post collecttrace ();

12: }

13: }

Listing 6.3: Bug 3 pesudo code
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To uncover this bug, we inserted 23 total trace points into CC2420ReceiveP.nc

source code and printed out the trace points using printf library provided by TinyOS

2.x. The whole wireless sensor network for running this test case was built by 9

total micaZ motes. One mote installed RadioCountToLeds application for sending

beacon packets over the radio. One mote installed BaseStation for receiving time

synchronization information from all synchronizing motes. Among 7 other motes

that installed TestFtsp application, one debugging mote installed buggy version of

CC2420ReceivedP and was connected to PC computer via a serial cable to collect

runtime traces. The trace was broken into smaller pieces at trace point 23 as shown

in the pesudo code. Every time trace point 23 was reached, the current subsequence

would end and following trace would be printed into a new subsequence. There are

two advantages of dividing runtime traces into smaller pieces. First, vPST sequence

analyzer can generate vectors from short sequences in reasonable amount of time,

while the sequences are too long, it may be unrealistic to conduct vPST-SVM outlier

analyzing because it may take too much time. Second, when the most outstanding

outliers detected, it is much easier to manually check short subsequences for bugs

rather than checking long subsequences. Therefore, partitioning runtime traces into

small pieces is for easier inspection of bugs.

This is a tricky bug that is much more difficult to be detected than the bugs in

first two test cases. A single iteration of vPST-SVM can hardly detect and confirm

the bug. Iterative analyzing was conducted to identify instances of triggered bugs

and locate it in the application source code. We started with a collected runtime

trace of 2000 total subsequences. At first iteration, 6 experiments on vPST-SVM

debugging system were conducted with vPST depth changing from 0 to 5. Very few

bugs were identified even vPST depth was set to 5. Then we went to second iteration.

First we deleted the top 10 outliers that were identified as non-buggy subsequences

from runtime trace file according results from first iteration when vPST depth was

1. Then another 6 vPST-SVM debugging experiments were conducted with vPST

depth changing from 0 to 5. Finally a third iteration was performed based on 1980
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sequences from second iteration at vPST depth 1 results with another 10 non-buggy

outliers deleted. The complete results of all three iterations are shown in Table 3.

As shown in the table, The deeper vPST was reached, the more likely bugs could

be identified in top 10 anomalies. With more iterations performed, more bugs were

detected in top 10 anomalies. It clearly shows deeper vPST can improve debugging

performance of the vPST-SVM debugging system. Also it demonstrates the system

can improve quickly by learning from developer’s input, even only a little feedback

was fed to the system.

35



Chapter 7

Conclusions

In this thesis, I proposed, implemented and evaluated a novel vPST-SVM WSN

debugging system by case studies. By applying the debugging system iteratively

on collected program runtime traces, hidden bugs in WSN applications can be

revealed and identified efficiently. The case studies demonstrated that the vPST-SVM

debugging system is a robust, generic, flexible and iterative debugging system that can

efficiently learn by inputing a little feedback from developers. For simple bugs with

obvious anomalous behavior, a single iteration of vPST-SVM debugging process can

identify the bugs very well. For tricky bugs without obvious anomalous symptoms,

several iterations of vPST-SVM analyzing by taking feedback from developers can

identify bugs reasonably well. By comparison of vPST-SVM performance with

different PST depth, I demonstrated that the prediction performance can be improved

significantly by taking more sequential information in vPST for SVM classification.

In addition, my extension of PST to vPST shed insightful light on future research

on sequential data, and my proposed WSN debugging system is the first flexible and

iterative debugger for WSN applications that can detect transient bugs very efficiently.
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