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Abstract—Barrier coverage is a critical issue in wireless sensor networks for security applications (e.g., border protection)
where directional sensors (e.g., cameras) are becoming more popular than omni-directional scalar sensors (e.g., microphones).
However, barrier coverage cannot be guaranteed after initial random deployment of sensors, especially for directional sensors
with limited sensing angles. In this paper, we study how to efficiently use mobile sensors to achieve k-barrier coverage. In
particular, two problems are studied under two scenarios. First, when only the stationary sensors have been deployed, what
is the minimum number of mobile sensors required to form k-barrier coverage? Second, when both the stationary and mobile
sensors have been pre-deployed, what is the maximum number of barriers that could be formed? To solve these problems, we
introduce a novel concept of weighted barrier graph (WBG) and prove that determining the minimum number of mobile sensors
required to form k-barrier coverage is related with finding k vertex-disjoint paths with the minimum total length on the WBG.
With this observation, we propose an optimal solution and a greedy solution for each of the two problems. Both analytical and
experimental studies demonstrate the effectiveness of the proposed algorithms.

Index Terms—Barrier coverage, mobile, hybrid, directional sensor, wireless sensor networks.
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1 INTRODUCTION

WIRELESS sensor networks (WSNs) have been
widely used as an effective surveillance tool for

security applications, such as battlefield surveillance,
border protection, and airport intruder detection. To
detect intruders who penetrate the regions of interest
(ROI), we need to deploy a set of sensor nodes that
can provide coverage of the ROI, a problem that is
often referred to as barrier coverage [11], where sensors
form barriers for intruders. A sensor network provides
k-barrier coverage for an ROI if all crossing paths
through the region is k-covered and a crossing path
is said to be k-covered if it can be covered by at least
k distinct sensors.

When only stationary sensors are used, however,
after the initial random or manual deployment, it is
possible that sensors could not form a barrier due to
gaps in their coverage, which would allow intruders
to cross the ROI without being detected. In fact, it is
difficult if possible at all to improve barrier coverage
for sensor networks consisting of only stationary sen-
sors. Fortunately, with recent technological advances,
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practical mobile sensors (e.g., Robomote [6], Packbot
[20]) have been developed, which provides us a way
to improve barrier coverage performance after sensor
networks have been deployed.

Directional sensors (e.g., camera, radar) have been
widely used for security applications. For example,
the FREEDOM system [1], deployed on the border
between Mexico and the United States, uses cameras
to detect illegal intruders. The SBInet project [2],
also deployed on the border between Mexico and
the United States, uses cameras, radar, and ground
sensors to construct a virtual fence to detect ille-
gal intruders. Different from omni-directional scalar
sensors, although directional sensors provide extra
dimensional information, they usually have limited
angle of views and facing directions, which therefore
decrease the probability of barrier formation after
initial random deployment.

In this paper, we study the barrier coverage forma-
tion problem in hybrid directional sensor networks
which consist of both stationary and mobile sensors
with the directional sensing model. In particular, we
consider a two-phase deployment: in the first phase,
after stationary sensors are deployed, their barrier
gaps are identified and the number of mobile sen-
sors needed can be calculated; in the second phase,
mobile sensors are deployed and move to the desired
locations to fill in these gaps to form barriers. Figure
1 shows an example of forming a strong barrier using
mobile sensors. Mobile sensors 1 and 2 fill in the gaps
between stationary sensors and form a strong barrier
with pre-existing stationary sensors for the ROI.

A lot of work has been done on barrier coverage.
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Fig. 1: An example of a strong barrier formation for hybrid di-
rectional sensor networks. Mobile sensors 1 and 2 fill in the gaps
between stationary sensors and form a strong barrier for the ROI.

However, most of existing work mainly focus on
critical condition analysis and barrier construction for
stationary sensors with the omni-directional sensing
model [5], [11], [15], [18], little effort has been made
to explore how to efficiently use mobile sensors to
form barrier coverage with stationary sensors, es-
pecially for directional sensors. Saipulla et al. [17]
used mobile sensors with limited mobility to form
a barrier for omni-directional sensors. Our work is
different from theirs in the following aspects. First,
we study k-barrier coverage formation on directional
sensors rather than 1-barrier coverage formation on
omni-directional sensors. Second, we want to find
the minimum number of mobile sensors needed to
form k barriers when only stationary sensors have
been deployed. Also, we want to find the maximum
number of barriers that could be formed when both
the stationary and mobile sensors have been pre-
deployed. To the best of our knowledge, we are
the first to study how to efficiently form k-barrier
coverage in hybrid directional sensor networks.

There are lots of challenging issues in the barrier
coverage formation problem of hybrid sensor net-
works. First, how to determine whether two sensors
overlap with each other and calculate the distance
between sensors is complicated due to the limited
angle of views and variation of facing directions of
directional sensors. Second, sensors are usually ran-
domly deployed (dropped by an aircraft), therefore,
it is challenging to determine whether the sensors
already form k barriers or not after initial deployment.
Third, the manufacturing cost of mobile sensors is
much higher than that of the stationary sensors [6],
which demands the usage of as few mobile sensors
as possible. It is therefore challenging to find the
minimum number of mobile sensors required to form
k-barrier coverage with the deployed stationary sen-
sors. Finally, mobile sensors should move to expected
locations to fill in the gaps between stationary sensors.
However, sensor movement costs a lot of energy and
mobile sensors are often power limited. Therefore,
another challenging issue is how to schedule and
move mobile sensors to expected locations so that the
total moving cost is minimized.

In particular, we study the following problems:
1) Min-Num-Mobile(k) problem: Given an ROI and

a deployed sensor network with only stationary

sensors, does the network provide k-barrier cov-
erage for the ROI? If not, what is the minimum
number of mobile sensors required to form k-
barrier coverage with the deployed stationary
sensors?

2) Max-Num-Barrier problem: Given an ROI and
a deployed sensor network with both stationary
and mobile sensors, what is the maximum num-
ber of barriers that could be formed?

3) Minimum cost barrier formation (MCBF) prob-
lem: After the number of mobile sensors needed
is calculated, how to move mobile sensors to
fill in the gaps to form barriers so that the total
moving cost is minimized?

In this paper, we systematically address the afore-
mentioned problems, and the main contributions of
this paper are summarized as follows:

• To the best of our knowledge, we are the first
to study the barrier coverage formation problem
in hybrid directional sensor networks with both
stationary and mobile sensors.

• We introduce a weighted barrier graph (WBG)
model for the study of the barrier coverage for-
mation problem. We prove that determining the
minimum number of mobile sensors required to
form k-barrier coverage is related with finding k
vertex(sensor)-disjoint 1 paths with the minimum
total length on the WBG.

• We propose optimal solutions and efficient
greedy solutions for the Min-Num-Mobile(k) prob-
lem and the Max-Num-Barrier problem.

• We formulate the problem of relocating mobile
sensors to form k-barrier coverage while min-
imizing the total moving cost as a minimum
cost bipartite assignment problem, and solve it in
polynomial time using the Hungarian algorithm.

The remainder of the paper is organized as follows.
We give a brief discussion about the literature of
barrier coverage in Section 2. We present the sys-
tem model in Section 3. We introduce the WBG and
present theoretical analysis of the barrier coverage
formation problem for directional sensor networks in
Section 4. We elaborate on the optimal and the greedy
solution for the Min-Num-Mobile(k) problem and the
Max-Num-Barrier problem in Section 5 and Section 6.
We present the solution to the MCBF problem in
Section 7. The performance evaluation is presented
in Section 8. Section 9 discusses the system model
and the proposed algorithms. Finally, we conclude the
paper in Section 10.

2 RELATED WORK

Kumar et al. [11] firstly defined the notion of k-
barrier coverage for WSNs and proposed an efficient

1. Without confusion, we interchangeably use vertex-disjoint and
sensor-disjoint throughout this paper.
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algorithm to determine whether a belt region is k-
barrier covered or not. They also introduced two
notions of probabilistic barrier coverage - weak barrier
coverage and strong barrier coverage, and derived
critical conditions for weak k-barrier coverage in
randomly deployed sensor networks. Kumar et al.
[12] further proposed a centralized, optimal sleep-
wakeup algorithm to prolong the lifetime of barrier
coverage. Chen et al. [5] introduced the notion of local
barrier coverage and devised localized sleep-wakeup
algorithms that provide near-optimal solutions. Liu et
al. [15] devised an efficient distributed algorithm to
construct multiple disjoint barriers for strong barrier
coverage in a randomly deployed sensor network on a
long irregular strip region. Saipulla et al. [18] studied
the barrier coverage of the line-based deployment
rather than the Poisson distribution model, and a tight
lower-bound for the existence of barrier coverage was
established. Li et al. [14] studied the weak k-barrier
coverage and derived a lower bound for the proba-
bility of weak k-barrier coverage with and without
considering the border effect, respectively.

Recently, barrier coverage in directional sensor net-
works has gradually received more and more at-
tention. Zhang et al. [25] studied the strong barrier
coverage problem for rotationally directional sensors.
A novel full-view coverage model was introduced in
[23] for camera sensor networks. A full-view coverage
verification method was proposed and an estimate of
deployment density to achieve full-view coverage for
the whole monitored area was given. With the full-
view coverage model, Wang et al. [22] further pro-
posed a novel method to select camera sensors from
an arbitrary deployment to form a camera barrier.
Directional sensor arrays were built to form a barrier
to detect and localize intruders in [24]. The minimum
camera barrier coverage problem was studied in cam-
era sensor networks [16]. Tao et al. [21] investigated
the problem of finding appropriate orientations of
directional sensors such that they can provide strong
barrier coverage.

With the development of mobile sensors, node mo-
bility is exploited to improve barrier coverage. Shen et
al. [19] studied the energy efficient relocation problem
for barrier coverage with mobile sensors. A central-
ized barrier algorithm was proposed to compute the
relocated positions for all sensors to form a barrier.
Keung et al. [9] focused on providing k-barrier cov-
erage against moving intruders. They demonstrated
that the problem is similar to classical kinetic theory
of gas molecules in physics, and derived the inherent
relationship between barrier coverage and a set of
crucial system parameters including sensor density,
sensor and intruder density. Ban et al. [3] studied the
problem on how to relocate mobile sensors to con-
struct k grid barriers with minimum energy consump-
tion. He et al. [8] studied the cost-effective barrier
coverage problem when there are not sufficient mobile

sensors and designed sensor patrolling algorithms to
improve barrier coverage. Saipulla et al. [17] proposed
a greedy algorithm to find barrier gaps and moved
mobile sensors with limited mobility to improve bar-
rier coverage.

3 SYSTEM MODEL AND PRELIMINARIES

In this section, we present the system model includ-
ing the network model and the sensing model for
directional sensors, and introduce some preliminaries
about barrier coverage and directional sensors.

3.1 System Model
We assume that the ROI is a two-dimensional rectan-
gular belt area. For the Min-Num-Mobile(k) problem, n
stationary sensors are randomly deployed in the belt
region. For the Max-Num-Barrier problem, n stationary
sensors and τ mobile sensors are randomly deployed
in the belt region. We assume that they are the same
type of sensors except that mobile sensors have the
ability to move. Let S = {s1, s2, · · · , sn} denote the
set of stationary sensors.

Fig. 2: An illustration of belt region (the square area), crossing paths,
and directional sensors.

As shown in Figure 2, the area with the length of L
and the width of H is generally a long and thin strip.
A crossing path is a path that crosses the complete
width of the area from the lower boundary to the up-
per boundary. A congruent crossing path is a crossing
path that is orthogonal to the two boundaries. The
path a and path b shown in Figure 2 demonstrate a
congruent crossing path and a random crossing path,
respectively. An intruder may attempt to penetrate the
area along any crossing path.

Unlike an omni-directional sensor, a directional
sensor has a limited angle of view and an orienta-
tion. Therefore, as shown in Figure 3(a), a sector is
commonly adopted to represent the sensing model
of directional sensors. Let si denote the directional
sensor i, then it can be represented by a 5-tuple
< xi, yi, r, α, βi >, where li = (xi, yi) is the two-
dimensional location of the center of sensor i, r is the
sensing range and α is half of the sensing angle of a
sensor. We assume that each sensor has the identical
sensing range and sensing angle. Relaxations to this
assumption will be discussed in Section 9. According
to the ground truth data in [7], the sensing angle of
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(a) (b)

Fig. 3: (a) The sector sensing model for directional sensors; (b) A
point p is covered by the sensor si.

directional sensors, 2α, is usually less than π. βi is
the orientation or the facing direction of sensor i. We
assume that βi is uniformly distributed in [0, 2π), e.g.,
βi ∼ U(0, 2π). Note that the omni-directional sensing
model is a special case of the directional sensing
model when 2α = 2π.

Definition 1. A two-dimensional point p = (x, y) is said
to be covered by a directional sensor si =<xi, yi, r, α, βi>
if and only if the following two conditions are satisfied.

• (x− xi)
2 + (y − yi)

2 ≤ r2,
• ang(

−→
lip) ∈ [βi −α, βi +α], where ang(·) denotes the

angle of (·).
The largest coverage range of a directional sensor,

denoted by lr, is the length of the longest line in
its sensing sector. Since the longest line is either the
sensing radius or the longest chord of the sector, we
have

lr =

{
max{r, 2r sinα} 0 ≤ α < π

2 ,

2r π
2 ≤ α ≤ π.

(1)

3.2 Preliminaries

Kumar et al. proved that a network provides k-barrier
coverage if and only if there exists k sensor-disjoint
barriers in the ROI [11]. The term of sensor-disjoint
barriers means that none of any two barriers have
sensors in common. Therefore, in order to provide k-
barrier coverage for the ROI, mobile sensors should
form k sensor-disjoint barriers with the stationary
sensors.

Two types of barrier coverage: weak barrier coverage
and strong barrier coverage, were also introduced in
[11]. Weak barrier coverage requires that the union of
sensors form a barrier in the horizontal direction from
the left boundary to the right boundary, so that every
intruder moving along congruent crossing paths can
be detected. Figure 4 shows an example of weak bar-
rier coverage. However, weak barrier coverage cannot
guarantee the detection of intruders following any
crossing path (e.g., path a). In contrast, strong barrier
coverage requires that the union of sensors forms a
barrier from the left boundary to the right boundary
so that any intruder can be detected no matter what
crossing path it takes. An example of strong barrier
coverage is shown in Figure 1. In this paper, we

Fig. 4: An example of weak barrier coverage formed by sensors in
grey color.

address the barrier coverage formation problem for
both weak and strong barrier coverage.

The fundamental problem for weak barrier cov-
erage is to decide whether two directional sensors
overlap in the horizontal direction or not. Let xL

i and
xR
i denote the left and the right coverage boundary

of sensor si in the horizontal direction, which can be
obtained by geometric calculation.

Definition 2. Directional sensors si and sj are said to
be weakly connected if they overlap in the horizontal
direction, that is, xL

i ≤ xL
j ≤ xR

i or xL
j ≤ xL

i ≤ xR
j .

Definition 3. Directional sensors si and sj are said to be
strongly connected if they overlap with each other.

The problem to decide whether two sensors overlap
with each other is easy to answer for omni-directional
sensors of disk sensing model. However, it is much
harder for directional sensors due to their different
orientations and limited angle of views. For example,
we can claim that two omni-directional sensors over-
lap with each other if the Euclidean distance between
their centers is smaller than or equal to 2r. However,
two directional sensors might not overlap even when
they are very close to each other, e.g., two cameras
can be side by side but looking at opposite directions.
Therefore, using only distance information would not
work for directional sensors. Note that the sensing
region of a directional sensor is bounded by two line
segments and an arc. We have the following Lemma.

Lemma 1. Directional sensors si and sj overlap with each
other if and only if there exists at least one intersection
between the two line segments and the arc of si and the
two line segments and the arc of sj .

Proof: ⇒. If there exists an intersection between
the two line segments and the arc of si and the two
line segments and the arc of sj , there must exist one
point covered by both si and sj . Then si and sj
overlap with each other.
⇐. If si and sj overlap with each other, there exists

at least one point covered by both si and sj . Since
the point is bounded by the two line segments and
the arc of each sensor, there must exist at least one
intersection between the two line segments and the
arc of si and that of sj .

Based on Lemma 1, the problem of deciding
whether si and sj overlap or not can be simplified
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to check whether there exist intersections between the
line segments of si and the line segments of sj , the
line segments of si (sj) and the arc of sj (si), and the
arc of si and the arc of sj .

Table 1 summarizes the notations used in the paper.

TABLE 1: Summary of Notations

Symbol Description
L the length of the belt region
H the width of the belt region
n the number of stationary sensors deployed
τ the number of mobile sensors deployed for the Max-Num-

Barrier problem
si the ith stationary sensor
li li = (xi, yi) the location of si
r the sensing range
α half of the sensing angle
βi the facing direction of si
lr the largest coverage range of each sensor
G the weighted barrier graph G = (V,E,W )
P∗

q the set of q vertex-disjoint paths with the minimum total
length on G

Pk
q the k-auxiliary set of P∗

q , which is composed of P∗
q and

k − q direct paths
P̂k the optimal set of k sensor-disjoint barriers to the Min-

Num-Mobile(k) problem
Nm the minimum number of mobile sensors required for the

Min-Num-Mobile(k) problem
Nb the maximum number of barriers for the Max-Num-Barrier

problem

4 PROBLEM FORMULATION AND ANALYSIS

In this section, we introduce a novel graph model,
weighted barrier graph (WBG), to formulate the bar-
rier coverage formation problem for hybrid direc-
tional sensor networks, and then present theoretical
analysis of the barrier coverage formation problem
based on the WBG.

4.1 Weighted Barrier Graph (WBG)
Definition 4. A weighted barrier graph G =
(V,E,W ) of a sensor network is constructed as fol-
lows. The set V consists of vertices corresponding to
the left boundary (s), all the stationary sensors (S) and
the right boundary (t) of the belt region, that is, V =
{v1, v2, · · · , vn+2} = {s ∪ S ∪ t}. E = {e(vi, vj)} is
the set of edges between any pair of vertices except (s, t).
W : E → R is the set of weights of each edge, where the
weight w(vi, vj) of edge e(vi, vj) is the minimum number
of mobile sensors needed to connect vi and vj .

To calculate the minimum number of mobile sen-
sors needed to connect vertices vi and vj , the distance
between two vertices must be calculated first. There-
fore, we further give the following definitions.

Definition 5. Weak distance dw(vi, vj): the minimum
distance between two vertices vi and vj in the horizontal
direction.

When both vi and vj are stationary sensors,
dw(vi, vj) = 0 if they are weakly connected; other-
wise, dw(vi, vj) = xL

j − xR
i given the assumption that

xL
j > xR

i . When vi is the left boundary s, dw(vi, vj) = 0

if vj intersects with the left boundary; otherwise,
dw(vi, vj) = vLj . When vi is the right boundary t,
dw(vi, vj) = 0 if vj intersects with the right boundary;
otherwise, dw(vi, vj) = L− vRj .

Definition 6. Strong distance ds(vi, vj): the minimum
distance between two vertices vi and vj .

ds(vi, vj) =

⎧⎪⎨
⎪⎩
dw(vi, vj) if vi or vj is s or t

0 if vi, vj ∈ S and overlap

min(d(pi, pj)) otherwise
(2)

where pi and pj are points on the sensing region of vi
and vj , respectively, d(pi, pj) is the Euclidean distance
between pi and pj .

The minimum number of mobile sensors needed to
connect vertices vi and vj is, therefore, calculated as
follows:

w(vi, vj) =

{
	dw(vi,vj)

lr

 weak barrier coverage

	ds(vi,vj)
lr


 strong barrier coverage
(3)

where lr is the largest coverage range of a sensor. Note
that the weak distance dw(vi, vj) and the strong dis-
tance ds(vi, vj) are used for the WBG of weak barrier
coverage and strong barrier coverage, respectively.

Figure 5(b) and 5(c) demonstrate the WBG of weak
barrier coverage and strong barrier coverage for the
sensor network shown in Figure 5(a). Any pair of
vertices is connected by an edge except s and t.
w(s, a) = 0 because sensor a intersects with the
left boundary. The two graphs have the same set of
vertices and edges but have different set of weights.
For example, w(b, f) = 1 for weak barrier coverage
while w(b, f) = 2 for strong barrier coverage, which
means that 1 and 2 mobile sensors can weakly or
strongly connect sensors b and f , respectively.

4.2 Theoretical Analysis
In the following, we present theoretical analysis of
the barrier coverage formation problem based on the
WBG. Note that all the conclusions work for both
weak and strong barrier coverage.

Lemma 2. Any path from s to t on the WBG is a barrier
composed of pre-existing stationary sensors and virtual
mobile sensors. The length of the path is the minimum
number of mobile sensors required to form the barrier.

Proof: According to the definition of WBG, if
we choose a path from s to t, and put exactly the
number of mobile sensors on each edge of path, then
the stationary sensors on the path are connected by
mobile sensors, therefore, a barrier is formed. The
minimum number of mobile sensors required to form
the barrier is equivalent to the sum of weights of all
edges on the path, which is the length of the path.

To better explain Lemma 2, take paths in Figure 5
for example. Suppose we choose the path s → a →
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(a)

(b)

(c)

Fig. 5: (a)The deployed sensor network; (b) weighted barrier graph
of weak barrier coverage; (c) weighted barrier coverage of strong
barrier coverage.

b → c → d → t in Figure 5(b). The path length is 6,
which means 6 mobile sensors are required to form
the barrier along the path. There are three gaps on
the path: b → c, c → d, and d → t, which requires 4, 1
and 1 mobile sensors to fill in them, respectively.

Recall that k-barrier coverage is equivalent to k
sensor-disjoint barriers. Based on Lemma 2, we have
the following theorem.

Theorem 3. If each of the k sensor-disjoint barriers to be
formed must contain at least one stationary sensor, deter-
mining the minimum number of mobile sensors required
to form k-barrier coverage with pre-existing stationary
sensors is equivalent to finding k vertex-disjoint paths on
the WBG with the minimum total length.

Proof: Based on Lemma 2, each barrier containing
at least one stationary sensor must be a path from s
to t on the WBG. Therefore, finding k sensor-disjoint
barriers is equivalent to finding k vertex-disjoint paths
on the WBG. Since we want to use the minimum
number of mobile sensors to form k sensor-disjoint
barriers, we should find the set of k vertex-disjoint
paths on the WBG that has the minimum total length.

Corollary 4. The sensor network provides k-barrier cov-

erage for the ROI after initial deployment iff there exist at
least k vertex-disjoint paths with length of 0 on the WBG.

Proof: A path with length 0 on the WBG means
the stationary sensors on the path can form a barrier
after initial deployment. When no mobile sensors is
needed, finding k-barrier coverage is equivalent to
finding k vertex-disjoint paths on the WBG. Therefore,
a region is k-barrier covered after initial deployment
is equivalent to the existence of k vertex-disjoint paths
with length of 0 on the WBG.

Besides all the paths from s to t on the WBG,
there is a kind of special paths using only mobile
sensors to form barriers. That is, s and t are directly
connected by using only mobile sensors. For this kind
of barriers, the optimal way of using the minimum
number of mobile sensors, obviously, is to deploy
them continuously along the horizontal direction. We
call this kind of barrier as direct barrier and the cor-
responding path (s, t) as direct path. Given the length
of belt region is L, the minimum number of mobile
sensors needed to form a direct barrier is 	 L

lr

. We can

observe that a direct barrier is always sensor-disjoint
from other paths on the WBG, and different direct
barriers are always sensor-disjoint from each other.
With this observation, we have the following lemma.

Lemma 5. Given a belt region with length L, the min-
imum number of mobile sensors required for each barrier
in the optimal set to the Min-Num-Mobile(k) problem
is upper bounded by 	 L

lr

.

Proof: Suppose P̂k is the optimal set of k sensor-
disjoint barriers with the minimum number of mobile
sensors needed to form k-barrier coverage. If any
barrier in P̂k needs more mobile sensors than a direct
barrier, we can always replace it with a direct barrier
for less number of mobile sensors needed. Therefore,
the previous P̂k is not the optimal set, which con-
tradicts to our assumption. Hence, no barrier in the
optimal set needs more than 	 L

lr

 mobile sensors.

Direct barriers are also needed when the vertex-
disjoint paths found on the WBG are not enough.
Suppose the application requires 5-barrier coverage,
but the maximum number of vertex-disjoint paths
found on the WBG is 3, then we can add two direct
barriers to reach 5-barrier coverage.

Suppose there exist k vertex-disjoint paths on the
WBG, and P ∗

k denote the set of k vertex-disjoint paths
with the minimum total length on the WBG. Note
that P ∗

k may not the optimal set to the Min-Num-
Mobile(k) problem that has the minimum total length
after considering direct paths, even no path in P ∗

k is
longer than 	 L

lr

. We will present the algorithm to find

the optimal set in Section 5.

5 THE MIN-NUM-MOBILE(K) PROBLEM

In this section, we present an efficient optimal algo-
rithm and a greedy algorithm to solve the Min-Num-
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Mobile(k) problem.
Before introducing our optimal algorithm, we first

introduce the vertex-disjoint path algorithm [4] which
can find a set of vertex-disjoint paths with the mini-
mum total length, P ∗

q , on a graph.
Given P ∗

i , the vertex-disjoint path algorithm performs
the following steps to find P ∗

i+1.
Step 1: Graph transformation. Transform the graph

G into a new graph NG based on P ∗
i by using the

following procedures. First, replace the edges of the
disjoint paths in P ∗

i by arcs directed towards the
source, and make the length of the arcs negative;
Second, split each vertex (except for endpoint vertices)
on the disjoint paths into two co-located subvertices
joined by an arc of length zero. Direct the arc of length
zero towards the source. Replace each external edge
connected to a vertex on the shortest paths by its two
arcs of the same length, where one arc is directed to
the first subvertex and the other one is directed from
the second subvertex.

Step 2: Shortest path finder. Find the shortest path
np on the new graph NG using the modified Dijkstra
algorithm [4].

Step 3: Path update. Update P ∗
i and np to get

P ∗
i+1: transform to the original graph G and erase

any edge of this shortest path interlacing with the
previous set of vertex-disjoint paths P ∗

i . Find the new
set of vertex-disjoint paths P ∗

i+1 after removing the
interlacing edges.

The initialization of the algorithm is P ∗
1 which is

the shortest path on the graph. Once P ∗
1 is obtained,

we can perform these steps iteratively to find P ∗
2 ,

P ∗
3 and so on. Note that for i < j, P ∗

i may not
be a subset of P ∗

j . Take Figure 5(c) as an example,
P ∗
2 = {{s, a, b, c, d, t}, {s, e, f, g, h, t}}, and P ∗

3 =
{{s, a, b, c, d, t}, {s, e, t}, {s, f, g, h, t}}. More details of
the algorithm can be found in [4].

5.1 Optimal Algorithm
Let P̂k denote the optimal set of k sensor-disjoint
barriers requiring the minimum number of mobile
sensors, and Nm = |P̂k| denote the minimum number
of mobile sensors needed. Note that | · | denotes the
total length of paths in ·. We first define the k-auxiliary
set to help us find the optimal set P̂k.

Definition 7. k-auxiliary set: P k
q is called the k-

auxiliary set of P ∗
q (0 ≤ q ≤ k), which is composed of

P ∗
q and k − q direct barriers (s, t).

We leverage the vertex-disjoint path algorithm to help
the design of our optimal algorithm. The basic idea is
to first find all the sets of vertex-disjoint paths with the
minimum total length on the WBG, and then extend
each set P ∗

q (0 ≤ q ≤ η) to its k-auxiliary set P k
q , where

η = min(k, ζ) and ζ is the maximum number of vertex-
disjoint paths on the WBG. The optimal set P̂k is the k-
auxiliary set that has the minimum total length among
all k-auxiliary sets.

Algorithm 1 Min-Num-Mobile(k)-Optimal algorithm

Input: Weighted barrier graph G, L, k and lr
Output: P̂k and Nm

1: Let P ∗0 ← ∅ and P k
0 denote a set of k direct barriers

2: P ∗1 ← Dijkstra(G)
3: η ← 1
4: while η < k do
5: NG← graph-transform(G,P ∗η )
6: if there exist paths from s to t on NG then
7: np← modified-Dijkstra(NG)
8: η ← η + 1
9: P ∗η ← path-update(P ∗η−1, np)

10: else
11: break
12: P̂k ← P k

η , and Nm ← |P ∗η |+ (k − η)� L
lr
�

13: for q = 0 to η − 1 do
14: if |P ∗q |+ (k − q)� L

lr
� < Nm then

15: P̂k ← P k
q , and Nm ← |P ∗q |+ (k − q)� L

lr
�

Algorithm 1 describes the details of the optimal
algorithm where Step 2 finds the first shortest path
on the WBG, i.e., P ∗

1 , Step 4 through 11 perform the
vertex-disjoint path algorithm iteratively to find all P ∗

q

for 1 < q ≤ η, and Step 13 through 15 find the k-
auxiliary set with the minimum total length among
all k-auxiliary sets and claim it as the optimal set.

Theorem 6. The optimal set of k sensor-disjoint barriers
requiring the minimum number of mobile sensors, P̂k, is
the k-auxiliary set with the minimum total length among
all k-auxiliary sets.

Proof: We first prove that P̂k must be a k-auxiliary
set P k

q composed of P ∗
q (q ∈ [0, η]) and k − q direct

barriers, where η = min(k, ζ) and ζ is the maximum
number of vertex-disjoint paths on the WBG.

Each barrier either contains at least one stationary
sensor or no stationary sensor. Therefore, each barrier
in P̂k is either a path on the WBG or a direct barrier.

Suppose no barrier in P̂k is a direct barrier, then all
barriers in P̂k are paths on the WBG. We know that P ∗

k

is the set of k vertex-disjoint paths with the minimum
total length on the WBG. Therefore, P̂k = P ∗

k , which
is composed of P ∗

k and k − k = 0 direct barriers.
When P̂k contains direct barriers, suppose there are

k − q (0 ≤ q ≤ η) direct barriers in P̂k. We prove that
the rest q sensor-disjoint barriers in the optimal set
must be P ∗

q . We prove it by contradiction. Suppose the
rest q sensor-disjoint barriers (vertex-disjoint paths)
in P̂k is not P ∗

q , we can always use P ∗
q to replace

these q sensor-disjoint barriers to get a new set of
k sensor-disjoint barriers with smaller total length,
which means that P̂k is not the optimal set. This
contradicts to our assumption. Therefore, the rest q
sensor-disjoint barriers in P̂k must be P ∗

q .
Therefore, the optimal set of k sensor-disjoint barri-

ers must be composed of P ∗
q (q ∈ [0, η]) and k−q direct

barriers, which is a k-auxiliary set. The total length of
a k-auxiliary set is |P ∗

q | + (k − q)	 L
lr

. Since q ranges
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from 0 to η, the k-auxiliary set with the minimum total
length is the optimal set of k sensor-disjoint barriers
and the minimum number of mobile sensors needed
is:

Nm = min{|P ∗
q |+ (k − q)	L

lr

}ηq=0

The optimality of Algorithm 1 is proved.

Theorem 7. Given a sensor network with n stationary
sensors, the optimal algorithm can solve the Min-Num-
mobile(k) problem in O(kn2).

Proof: The number of vertices on the WBG is n+2,
which is on the order of n. The number of edges on
the graph is n(n − 1)/2 − 1, which is on the order of
n2. The vertex-disjoint path algorithm consists of graph
transformation, modified Dijkstra algorithm and path
update. The running time of graph transformation
and path update is O(n) and the running time of the
modified Dijkstra algorithm is O(n log n + n2). Thus,
the running time of the vertex-disjoint path algorithm
is O(n2). Since the vertex-disjoint path algorithm is
performed at most k times, the optimal algorithm can
solve the Min-Num-Mobile(k) problem in O(kn2).

5.2 Greedy Algorithm

The vertex-disjoint path algorithm involves a lot of
operations, such as graph transformation (node-split
and node-merge), which are complicated especially
for large-scale networks. In this section, we propose
a greedy algorithm which is faster than the optimal
algorithm.

The basic idea of the greedy algorithm is to re-
peatedly find the shortest path on the WBG until k
paths are found or the latest found path is longer
than 	 L

lr

 or no path can be found. If, in the end, the

number of found paths is smaller than k, additional
direct barriers are added to form the k barriers. The
procedures of the greedy algorithm are described as
follows:

1) Initialize P̂k as an empty set.
2) If there exist paths from s to t on the WBG,

find the shortest path using Dijkstra’s algorithm;
otherwise, go to 5).

3) If the found shortest path is longer than 	 L
lr

,

discard the path, go to 5); otherwise, go to 4).
4) Add the path into P̂k. If the path is the k-

th found path, stop; otherwise, remove all the
vertices (except s and t) on the found path from
the WBG, go to 2).

5) Suppose the number of paths in P̂k is q, add k−q
direct barriers into P̂k.

The pseudocode of the greedy algorithm is pre-
sented in Algorithm 2.

Theorem 8. Given a sensor network with n stationary
sensors, the greedy algorithm can solve the Min-Num-
Mobile(k) problem in O(kn2).

Algorithm 2 Min-Num-Mobile(k)-Greedy algorithm

Input: Weighted barrier graph G, L, k and lr
Output: P̂k and Nm

1: P̂k ← ∅, q ← 0
2: while q < k do
3: if there exist paths from s to t on G then
4: p← Dijkstra(G)
5: if |p| ≤ � L

lr
� then

6: P̂k ← P̂k ∪ p
7: q ← q + 1
8: update G by removing all the vertices (except s

and t) on p
9: else

10: break;
11: Nm ← |P̂k|
12: if q < k then
13: P̂k ← P̂k ∪ {(s, t), · · · , (s, t)}

︸ ︷︷ ︸

k−q

, and Nm ← |P̂k|

Proof: We have shown that the number of vertices
and edges on the WBG are on the order of n and n2,
respectively. Therefore, the running time of Dijkstra’s
algorithm is O(n2). Since the greedy algorithm runs
Dijkstra’s algorithm at most k rounds, the greedy
algorithm can solve the Min-Num-Mobile(k) problem in
O(kn2).

Although the running times of the optimal algo-
rithm and the greedy algorithm are both O(kn2) in
the worst case, the greedy algorithm is usually much
faster than the optimal algorithm, especially for large
scale networks, since it does not need to perform
graph transformation and path update. We will show
the comparison of computation time between two
algorithms in the performance evaluation section.

6 THE MAX-NUM-BARRIER PROBLEM

Once the minimum number of mobile sensors re-
quired to form k-barrier coverage is solved, the Max-
Num-Barrier problem can be solved accordingly. Notice
that the Max-Num-Barrier problem is studied under
a different scenario where both the stationary and
mobile sensors have been pre-deployed.

Given an ROI and a deployed hybrid sensor net-
work with n stationary and τ mobile sensors, the
maximum number of barriers that could be formed,
denoted by Nb, is k if the minimum number of
mobile sensors required to form k-barrier coverage
is less than or equal to τ , but the minimum number
of mobile sensors required to form (k + 1)-barrier
coverage is larger than τ . Therefore, the optimal so-
lution to the Max-Num-Barrier problem is based on the
optimal solution to the Min-Num-Mobile(k) problem. In
the following, we propose an optimal algorithm as
well as a faster greedy algorithm to solve the Max-
Num-Barrier problem.

6.1 Optimal Algorithm
The optimal algorithm is described as follows:
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1) Perform Algorithm 1 (the Min-Num-Mobile(k)-
Optimal Algorithm) with k increasing until
|P̂k+1| > τ .

2) The maximal number of barriers is k.
According to Theorem 6, the set of Nb barriers is

composed of a set of vertex-disjoint paths P ∗
q on the

WBG and direct barriers. Therefore, we have

Nb = q + �(τ − |P ∗
q |)/	

L

lr

� (4)

Theorem 9. The maximum number of barriers Nb is lower
bounded by �τ/	 L

lr

� and upper bounded by n+�τ/	 L

lr

�.

Proof: When all barriers are direct barriers, the
maximum number of barriers reaches its lower bound
�τ/	 L

lr

�. In Eq. 4, Nb = q + �(τ − |P ∗

q |)/	 L
lr

�. For a

WBG, q ≤ n because the maximum number of vertex-
disjoint paths on it cannot be larger than the number
of stationary sensors n. When q reaches n, and the
total length |P ∗

n | is 0, the maximum number of barriers
reaches its upper bound n+ �τ/	 L

lr

�.

Theorem 10. For a deployed sensor network with n sta-
tionary sensors and τ mobile sensors, the optimal algorithm
can solve the Max-Num-Barrier problem in O(n3).

Proof: The basis of the optimal algorithm is
the Min-Num-Mobile(k)-Optimal Algorithm, the running
time of which is O(kn2) for k barriers. According to
Theorem 9, in the worst case, the maximum num-
ber of barriers could be n + �τ/	 L

lr

�. The running

time of the Min-Num-Mobile(k)-Optimal Algorithm is
O(n3 + n2�τ/	 L

lr

�) for n + �τ/	 L

lr

� barriers. Since

�τ/	 L
lr

� is a constant, the optimal algorithm can solve

the Max-Num-Barrier problem in O(n3).

6.2 Greedy Algorithm
We also propose a faster greedy algorithm for the
Max-Num-Barrier problem. The basic idea is to repeat-
edly find the shortest path on the WBG until the
deployed number of mobile sensors is reached or no
path can be found or the latest found path is longer
than 	 L

lr

. In the end, if some mobile sensors are left,

we use them to construct direct barriers. The greedy
algorithm is described as follows:

1) Initialize q with 0, and Pq as an empty set.
2) If there exist paths from s to t on the WBG, find

the shortest path p using Dijkstra’s algorithm;
otherwise, go to 5).

3) If the found shortest path is longer than 	 L
lr

,

discard the path, go to 5); otherwise, go to 4).
4) If |Pq|+|p| < τ , remove all the vertices (except for

s and t) on the path p from the WBG, put p into
Pq and increase q by 1, go to 2). If |Pq|+ |p| = τ ,
k = q + 1, stop; otherwise, k = q, stop.

5) The maximum number of barriers is q + �(τ −
|Pq|)/	 L

lr

�.

The pseudocode of the greedy algorithm is pre-
sented in Algorithm 3.

Algorithm 3 Max-Num-Barrier-Greedy algorithm

Input: Weighted barrier graph G, L, lr and τ
Output: Nb

1: q ← 0 and Pq ← ∅
2: while true do
3: if there exist paths from s to t on G then
4: p← Dijkstra(G)
5: if |p| ≤ � L

lr
� then

6: if |Pq|+ |p| ≤ τ then
7: q ← q + 1
8: Pq ← Pq−1 ∪ p
9: update G by removing all the edges incident

to the vertices (except s and t) on p
10: else
11: if |Pq|+ |p| = τ then
12: Nb ← q + 1, break.
13: else
14: Nb ← q, break.
15: else
16: Nb ← q + �(τ − |Pq|)/� Llr �	, break.
17: else
18: Nb ← q + �(τ − |Pq|)/� Llr �	, break.

Theorem 11. The maximum number of barriers found by
the greedy algorithm is lower bounded by �τ/	 L

lr

� and

upper bounded by n+ �τ/	 L
lr

�.

Proof: The proof is similar to that of Theorem 9.

Theorem 12. For a deployed sensor network with n sta-
tionary sensors and τ mobile sensors, the greedy algorithm
can solve the Max-Num-Barrier problem in O(n3).

Proof: The running time of Dijkstra’s algorithm
is O(n2). In the worst case, the greedy algorithm
would perform Dijkstra’s algorithm n+�τ/	 L

lr

� times.

Therefore, the running time for the greedy algorithm
is O(n3 + n2�τ/	 L

lr

�). Since �τ/	 L

lr

� is a constant,

the greedy algorithm can solve the Max-Num-barrier
problem in O(n3).

7 MCBF PROBLEM

In order to form k barriers, mobile sensors should
move to fill in the gaps on the paths. We assume
that the moving cost is proportional to the moving
distance. Hence, the objective of the MCBF problem
is to minimize the total moving distance of mobile
sensors to form k barriers. However, the problem is
difficult to solve due to the complexity of deploying
sensors to fill in a gap.

Fig. 6: Illustration of the complexity of deploying mobile sensors
to fill in a gap. s1 and s2 are two stationary sensors, m1, m2 and
m3 are three mobile sensors.
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(a) (b)

(c)

Fig. 7: Three different deployment cases: (a) lr = r when 2α < π;
(b) lr = 2r sinα when 2α < π; (c) lr = 2r when 2α ≥ π.

As shown in Figure 6, there are too many ways to
fill in a gap. To the best of our knowledge, there is
no optimal solution for the MCBF problem. In order
to efficiently solve this problem, we divide it into
two subproblems. First, how to calculate the target
locations for mobile sensors to fill in a gap? Second,
how to move mobile sensors to the set of target
locations with the minimum total moving distance?
In the following, we will describe how to solve these
two subproblems to yield a suboptimal solution to the
MCBF problem.

7.1 Target Locations Calculation
The target locations are the places where mobile sen-
sors should move to so that k barriers can be formed.
Without loss of generality, we consider the calculation
of target locations for strong barrier coverage. The cal-
culation for weak barrier coverage is simply a special
case where only the x-coordinates of target locations
for strong barrier coverage should be considered.

Given two stationary sensors sa and sb, suppose
the edge e(sa, sb) is on one path of the set of k
vertex-disjoint paths and its weight w(sa, sb) is not
zero. Therefore, w(sa, sb) mobile sensors should move
to w(sa, sb) target locations to connect sa and sb.
Suppose the closest pair of points between sa and sb
are pa = (xa, ya) on sa and pb = (xb, yb) on sb. The
minimum distance between sa and sb is

ds(sa, sb) = d(pa, pb) =
√
(xb − xa)2 + (yb − ya)2

Then the minimum number of mobile sensors needed
to fill the gap is w(sa, sb) = 	ds(sa,sb)

lr

. We distribute

mobile sensors evenly with the longest line of the
sensing sector along the line segment papb. Note that
there are too many ways to deploy mobile sensors
to fill in a gap. Our deployment provides one the
easier ways to calculate the target locations. There-
fore, the interval between the two mobile sensors is
dv = ds(sa,sb)

w(sa,sb)
. As mentioned in Section 3, the longest

line of a sector could either be the radius or the longest
chord when 0 ≤ 2α < π, or 2r when π ≤ 2α ≤ 2π.
Corresponding to these three cases, we have three
deployment strategies, as shown in Figure 7.

Let ϕ denote the direction of −−→papb. Let h denote the
height from the center to the longest chord of a sector.

Suppose the target locations are ti = (txi , t
y
i , t

o
i ) for i =

1, 2, · · · , w(sa, sb), where txi and tyi are the x-coordinate
and y-coordinate of the target location ti, and toi is the
facing direction of the mobile sensor on ti.

As show in Figure 7(a), when lr = r and the sensing
angle 2α < π, mobile sensors are evenly deployed
with the radius along the facing direction on the line
segment. Therefore, we have

txi = xa + (i− 1)dv cosϕ

tyi = ya + (i− 1)dv sinϕ

toi = ϕ

As shown in Figure 7(b), when lr = 2r sinα and
2α < π, mobile sensors are evenly deployed with the
longest chord on the line segment. Therefore, we have

txi = xa + (i− 1)dv cosϕ+ l̄ cos(ϕ+ λ)

tyi = ya + (i− 1)dv sinϕ+ l̄ sin(ϕ+ λ)

toi = (ϕ+ 3π/2) mod 2π

where l̄ =
√
h2 + (dv/2)2, λ = arctan(2h/dv).

Finally, as shown in Figure 7(c), when lr = 2r and
2α ≥ π, mobile sensors are evenly deployed with the
diameter on the line segment. Therefore, we have

txi = xa + (i− 0.5)dv cosϕ

tyi = ya + (i− 0.5)dv sinϕ

toi = (ϕ+ π/2) mod 2π

7.2 Minimum Total Cost Sensor Movement
Suppose the minimum number of mobile sensors re-
quired to form k-barrier coverage is μ. Then μ mobile
sensors should move to μ target locations to form k-
barrier coverage. Suppose the deployed number of
mobile sensors is τ (τ ≥ μ). Let δij denote a decision
variable, where δij = 1 if mobile sensor mi moves to
target location tj , δij = 0 otherwise. dij is the distance
for mobile sensor mi to move to target location tj . The
objective is to select μ out of τ mobile sensors and
move them to μ target locations while minimizing the
total moving distance.

Minimize
τ∑

i=1

μ∑
j=1

dijδij (5)

subject to
∑
i

δij = 1, ∀j = 1, 2, · · · , μ. (6)

∑
j

δij ≤ 1,∀i = 1, 2, · · · , τ. (7)

δij = 0 or 1, i = 1, 2, · · · , τ ; j = 1, 2, · · · , μ.
The objective function minimizes the total moving

distance with the first constraint indicating that every
target location must be assigned with only one mobile
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sensor and the second constraint indicating that each
mobile sensor can be assigned to at most one target
location.

Provided with a set of target locations and a set
of mobile sensors, the formulated problem indeed is
a minimum cost bipartite assignment problem. The
Hungarian algorithm [10] [13] provides the optimal
solution to this problem and its complexity is proved
to be O(μ2τ). Note that [3] studied a similar problem
and also used the Hungarian algorithm to solve it.
Please refer to [10] [13] for the details of the Hungar-
ian algorithm.

8 PERFORMANCE EVALUATION

In this section, we conduct simulations using Matlab
to evaluate the performance of the proposed algo-
rithms.

8.1 The Min-Num-Mobile(k) Problem
The ROI is a belt region of length L = 500m and
width H = 100m. Initially, stationary sensors are
uniformly deployed in the belt region. After the min-
imum number of mobile sensors is calculated, mobile
sensors are deployed uniformly in the belt region and
then assigned to different target locations using the
Hungarian algorithm to form k-barrier coverage.

The evaluation mainly focuses on four performance
metrics:

• The minimum number of mobile sensors required
to form k-barrier coverage

• The total moving distance for mobile sensors to
form k-barrier coverage

• The average moving distance for mobile sensors
to form k-barrier coverage

• The number of direct barriers needed in k barriers
Evaluation of these performance metrics is con-

ducted on different parameters, such as the number of
barriers, the number of stationary sensors, the sensing
range and the sensing angle (or field of view). For all
the simulation results presented in this paper, each
data point is an average of 100 experiments. Both
weak and strong barrier coverage are studied.

8.1.1 Effects of the Number of Barriers
We first evaluate the performance of the algorithms on
the number of barriers. Figure 8 shows the experimen-
tal results. The number of mobile sensors required to
form k-barrier coverage increases as k increases for all
the algorithms, as shown in Figure 8(a). The optimal
algorithms always use less number of mobile sensors
to realize k weak/strong barrier coverage than the
greedy algorithms. When k ≤ 3, the two algorithms
give the same result. Therefore, when smaller number
of barriers is needed to be formed, greedy algorithms
are more suitable because they are faster than the
optimal algorithms. We can also observe that forming
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Fig. 8: Performance evaluation on different number of barriers (k),
and fixed n = 100, r = 20 and α = π/4

strong barrier coverage always requires more mobile
sensors than forming weak barrier coverage.

The total moving distance, as shown in Figure 8(b),
increases as k increases because more mobile sensors
are needed to fill in more gaps when k becomes larger.
The total moving distance for strong barrier coverage
is always longer than that for weak barrier coverage.
This is due to two reasons. First, forming strong
barrier coverage requires more number of mobile
sensors than forming weak barrier coverage. Second,
mobile sensors only need to move in the horizontal
direction for weak barrier coverage while they need to
move in two dimensions for strong barrier coverage.
Although the total moving distance is increasing, the
average moving distance for mobile sensors, as shown
in Figure 8(c), decreases when k becomes larger. This
is because less number of mobile sensors is required
for smaller number of barriers, which makes the dis-
tribution of mobile sensors less dense. Therefore, each
mobile sensor under larger k moves less on average
to reach a target location.

As shown in Figure 8(d), no direct barriers are
needed when k ≤ 5, and then the number of direct
barriers increases linearly as k increases. This is be-
cause stationary sensors can work with mobile sensors
to construct barriers when k is small. When most of
stationary sensors are used up, if we want to form
more barriers, the direct barrier is obviously the best
choice.

8.1.2 Effects of the Number of Stationary Sensors,
the Sensing Range and the Sensing Angle
We then evaluate the effects of the number of station-
ary sensors, the sensing range and the sensing angle
on the performance metrics and show their perfor-
mance results in Figures 9, 10 and 11, respectively.
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Fig. 9: Performance evaluation on different number of stationary
sensors (n), and fixed k = 5, r = 20 and α = π/4
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Fig. 10: Performance evaluation on different sensing range (r), and
fixed k = 5, n = 100 and α = π/4

We can observe that, given a fixed number of barriers
to be formed, the number of mobile sensors required
decreases when any of these three factors increases.
This is because increasing any of them can reduce
the number of gaps and the size of gaps between
stationary sensors, which then reduces the number of
mobile sensors needed. We can also observe that the
optimal algorithms always require less mobile sensors
than the greedy algorithms, and forming k strong
barrier coverage requires more mobile sensors than
forming k weak barrier coverage.

The total moving distance, as shown in Figures 9(b),
10(b) and 11(b) decreases as any of these three factors
increases. This is because less number of mobile sen-
sors is required to form barriers. The total moving
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Fig. 11: Performance evaluation on different sensing angle (2α), and
fixed k = 5, n = 100 and r = 20

distance for strong barrier coverage is always larger
than that of weak barrier coverage. We also observe
that the average moving distance of mobile sensors
increases as any of these three factors increases. This
is because the distribution of mobile sensors are less
dense for less number of mobile sensors, which re-
quires mobile sensors to move longer on average to
reach target locations.

As shown in Figures 9(d), 10(d) and 11(d), when
any of these three factors is small, direct barriers
may be needed. This is because almost all station-
ary sensors have been used up before reaching the
specified number of barriers. Then the only way to
achieve the specified number of barriers is to use
direct barriers. We also observe that forming k weak
barriers requires more direct barriers than forming k
strong barriers. This is because forming weak barriers
used more stationary sensors than forming the same
number of strong barriers. In other words, stationary
sensors could be more easily used up for weak barrier
coverage. Therefore, more direct barriers are involved
to form k weak barriers than those for k strong
barriers.

8.2 The Max-Num-Barrier Problem

In this section, we evaluate the performance of the
proposed algorithms for the Max-Num-Barrier problem.

The ROI is a belt region of length L = 500m
and width H = 100m. Initially, both n stationary
sensors and τ mobile sensors are uniformly deployed
in the ROI. After the maximum number of barriers
and the set of barriers are found, mobile sensors can
move to target locations to form multiple barriers.
The maximum number of barriers is the performance
metric of the evaluation. The evaluation is conducted
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Fig. 12: Performance evaluation on: (a) different number of station-
ary sensors, fixed τ = 50, r = 20m and α = π/4; (b) different
number of mobile sensors, fixed n = 100, r = 20m and α = π/4;
(c) different sensing range, fixed n = 100, τ = 50 and α = π/4; (d)
different sensing angle, fixed n = 100, τ = 50 and r = 20m

on different parameters including the number of sta-
tionary sensors, the number of mobile sensors, the
sensing range and the sensing angle.

Figure 12 shows the performance evaluation results.
We can observe that the increasing of any one of
the four factors could result in the increasing of the
maximum number of barriers. The proposed optimal
algorithms always perform better than the greedy
algorithms. However, the difference between them is
not very obvious. For example, the maximum num-
ber of barriers for greedy and optimal algorithm are
almost the same in Figure 12(b). We also observe
that the maximum number of weak barriers is always
larger than that of strong barriers, given the same
network deployment. That is, it is much easier to form
weak barriers than to form strong barriers.

8.3 Computation Time Comparison
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Fig. 13: Computation time comparison between the optimal and
greedy algorithm for: (a) Min-Num-Mobile(k) problem; (b) Max-
Num-Barrier problem with fixed n = 100, r = 20 and α = π/4.

Figure 13 demonstrates the comparison of compu-
tation times between the optimal algorithms and the

greedy algorithms. The algorithms run on Thinkpad
T420 with CPU of 2.80GHz and 4GB RAM. We can see
that the computation times of the optimal algorithms
increase significantly with the increase of the number
of barriers or the number of mobile sensors deployed.
The computation times of the greedy algorithms, how-
ever, do not increase significantly. Therefore, although
two algorithms for the same problem have the same
running time in the worst case, the greedy algorithm
is usually faster and more scalable to large-scale net-
works as compared to the optimal algorithm.

9 DISCUSSION

In this paper, we have proposed algorithms for the
barrier coverage formation problem under the as-
sumption that the sensor network is composed of the
same type of sensors. In reality, it is more than likely
that different types of sensors may coexist in an ROI
for intruder detection. It is worth noting that the WBG
model and the proposed algorithms would also work
for sensor networks with different types of sensors.

Let us consider a heterogeneous network where
there are different types of stationary and mobile sen-
sors. Because different types of sensors have different
hardware costs, the objective becomes minimizing the
total cost of mobile sensors needed to form k-barrier
coverage. By letting the weight of each edge as the
minimum cost of mobile sensors needed to connect
two stationary sensors, we can construct the WBG for
the network. Once the WBG is constructed, we can
apply the optimal algorithm to find the minimum cost
of mobile sensors needed to form k-barrier coverage.

Also note that some assumptions in this paper may
not be very realistic. For example, in reality, the ROI
may be very complicated. It is possible that sensors
do not know their accurate locations and obstacles
may exist in the sensing regions of sensors. These
conditions may be interpreted as faults that would
affect the performance of barrier coverage and the
design of fault tolerant algorithm for barrier coverage
formation would be one of our future work.

10 CONCLUSIONS

In this paper, we studied the barrier coverage for-
mation problem in hybrid directional sensor net-
works. We introduced a novel weighted barrier graph
model for the barrier coverage formation problem. We
proposed an optimal algorithm and a faster greedy
algorithm to find the minimum number of mobile
sensors required to form k-barrier coverage with
pre-existing stationary sensors. We also proposed an
optimal algorithm and a faster greedy algorithm to
determine the maximum number of barriers when
both the stationary and mobile sensors have been pre-
deployed. In addition, we formulated the problem
of moving mobile sensors to form k-barrier coverage
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with the minimum total moving distance as a mini-
mum cost bipartite assignment problem and solved it
using the Hungarian algorithm. Both analytical and
experimental studies demonstrated the effectiveness
of our proposed algorithms.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous
reviewers whose insightful comments helped improve
the presentation of this paper significantly. This work
was supported in part by NSF CNS-1017156 and
CNS-0953238, and in part by NSFC 61273079 and
ANRNSFC 61061130563.

REFERENCES

[1] FREEDOM system, http://www.
friendsoftheborderpatrol.com/Freecameras.htm.

[2] R. C. Archibold, 28-Mile Virtual Fence Is Rising Along the
Border. New York Times, 2007.

[3] D. Ban, W. Yang, J. Jiang, J. Wen, and W. Dou, ”Energy-
Efficient Algorithms for k-Barrier Coverage in Mobile Sensor
Networks,” International Journal of Computers, Communication &
Control, Vol. 4, pp. 616-624, 2010.

[4] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing,
Kluwer Academic, 1998.

[5] A. Chen, S. Kumar, and T. H. Lai, ”Designing Localized Algo-
rithms for Barrier Coverage,” Proc. ACM MobiCom, pp. 63-74,
2007.

[6] K. Dantu, M. H. Rahimi, H. Shah, S. Babel, A. Dhariwal,
and G. S. Sukhatme, ”Robomote: Enabling Mobility in Sensor
Networks,” Proc. IEEE IPSN, pp. 404-409, 2005.

[7] M. A. Guvensan and A. G. Yavuz, ”On Coverage Issues in
Directional Sensor Networks: A Survey,” Ad Hoc Networks, vol.
9, no. 7, pp. 1238-1255, 2011.

[8] S. He, J. Chen, X. Li, X. Shen, and Y. Sun, ”Cost-effective barrier
coverage by mobile sensor networks,” Proc. IEEE INFOCOM,
2012.

[9] Y. Keung, B. Li, and Q. Zhang, ”The Intrusion Detection in
Mobile Sensor Network.” Proc. ACM MobiHoc, pp. 11-20, 2010.

[10] H. W. Kuhn, ”The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83-97,
1955.

[11] S. Kumar, T. H. Lai, and A. Arora, ”Barrier Coverage with
Wireless Sensors,” Proc. ACM MobiCom, pp. 284-298, 2005.

[12] S. Kumar, T. H. Lai, M. E. Posner, and P. Sinha, ”Optimal Sleep-
Wakeup Algorithms for Barriers of Wireless Sensors,” Proc. the
BROADNETS, pp. 327-336, 2007.

[13] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

[14] L. Li, B. Zhang, X. Shen, J. Zheng, and Z. Yao, ”A Study on the
Weak Barrier Coverage Problem in Wireless Sensor Networks,”
Computer Networks, vol. 55, no. 3, pp. 711-721, 2011.

[15] B. Liu, O. Dousse, J. Wang, and A. Saipulla, ”Strong Barrier
Coverage of Wireless Sensor Networks,” Proc. ACM MobiHoc,
pp. 411-420, 2008.

[16] H. Ma, M. Yang, D. Li, Y. Hong, and W. Chen, ”Minimum
Camera Barrier Coverage in Wireless Camera Sensor Net-
works,” Proc. IEEE INFOCOM, pp. 217-225, 2012.

[17] A. Saipulla, B. Liu, G. Xing, X. Fu, and J. Wang, ”Barrier Cov-
erage with Sensors of Limited Mobility,” Proc. ACM MobiHoc,
pp. 201-210, 2010.

[18] A. Saipulla, C.Westphal, B. Liu, and J.Wang, ”Barrier Coverage
of Line-Based Deployed Wireless Sensor Networks,” Proc. IEEE
INFOCOM, pp. 127-135, Apr. 2009.

[19] C. Shen, W. Cheng, X. Liao, and S. Peng, ”Barrier Coverage
with Mobile Sensors,” Proc. I-SPAN, pp. 99-104, May 2008.

[20] A. A. Somasundara and A. Ramamoorthy, ”Mobile Element
Scheduling with Dynamic Deadlines,” IEEE Transactions on
Mobile Computing, vol. 6, no. 4, pp. 1142-1157, 2007.

[21] D. Tao, S. Tang, H. Zhang, X. Mao, and H. Ma, ”Strong
Barrier Coverage in Directional Sensor Networks,” Computer
Communications, vol. 35, no. 8, pp. 895-905, 2012.

[22] Y. Wang and G. Cao, ”Barrier Coverage in Camera Sensor
Networks,” Proc. ACM MobiHoc, 2011.

[23] Y.Wang and G. Cao, ”On Full-View Coverage in Camera
Sensor Networks,” Proc. IEEE INFOCOM, 2011.

[24] Z. Wang, J. Luo, and X. Zhang, ”A novel location-penalized
maximum likelihood estimator for bearing-only target localiza-
tion,” IEEE Transactions on Signal Processing, vol. 60, no. 12, pp.
6166-6181, 2012.

[25] L. Zhang, J. Tang, and W. Zhang, ”Strong Barrier Coverage
with Directional Sensors,” Proc. IEEE GlobeCom, pp. 1-6, Nov.
2009.

Zhibo Wang received the B.E. degree in
Automation from Zhejiang University, China,
in 2007. He is currently pursuing the Ph.D.
degree in Electrical Engineering and Com-
puter Science at University of Tennessee,
Knoxville. His research interests include
wireless sensor networks and mobile sens-
ing systems.

Jilong Liao received the B.E. degree from
University of Electronic Science and Technol-
ogy, China, in 2010. He is currently pursuing
the Ph.D. degree in Electrical Engineering
and Computer Science at the University of
Tennessee, Knoxville. His research interests
include mobile system, data analysis and
wireless sensor networks.

Qing Cao received his Ph.D. degree from the
University of Illinois in 2008, his M.S. degree
from the University of Virginia, and his B.S.
degree from Fudan University, China. He is
currently an assistant professor in the De-
partment of Electrical Engineering and Com-
puter Science at the University of Tennessee.
His research interests include wireless sen-
sor networks, embedded systems, and dis-
tributed networks. He is a member of ACM,
IEEE, and the IEEE Computer Society.

Hairong Qi received the B.S. and M.S. de-
grees in Computer Science from Northern
JiaoTong University, Beijing, China in 1992
and 1995 respectively, and the Ph.D. de-
gree in Computer Engineering from North
Carolina State University, Raleigh, in 1999.
She is currently a Professor with the De-
partment of Electrical Engineering and Com-
puter Science at the University of Tennessee,
Knoxville. Her current research interests are
in advanced imaging and collaborative pro-

cessing in resource-constrained distributed environment, hyperspec-
tral image analysis, and bioinformatics.

Zhi Wang received the B.S. degree from
Shenyang Jian Zhu University, China, in
1991, the M.S. degree from Southeast Uni-
versity, China, in 1997, and the Ph.D. de-
gree from Shenyang Institute of Automation,
the Chinese Academy of Sciences, China,
in 2000. He is currently an Associate Pro-
fessor in the Department of Control Science
and Engineering of Zhejiang University. His
research interests include wireless sensor
networks, visual sensor networks, industrial

communication and systems and networked control systems.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


