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Abstract—In recent years, non-volatile memory devices such
as SSD drives have emerged as a viable storage solution due to
their increasing capacity and decreasing cost. Due to the unique
capability and capacity requirements in large scale HPC (High
Performance Computing) storage environment, a hybrid config-
uration (SSD and HDD) may represent one of the most available
and balanced solutions considering the cost and performance.
Under this setting, effective data placement as well as movement
with controlled overhead become a pressing challenge. In this
paper, we propose an integrated object placement and movement
framework and adaptive learning algorithms to address these
issues. Specifically, we present a method that shuffle data objects
across storage tiers to optimize the data access performance. The
method also integrates an adaptive learning algorithm where real-
time classification is employed to predict the popularity of data
object accesses, so that they can be placed on, or migrate between
SSD or HDD drives in the most efficient manner. We discuss
preliminary results based on this approach using a simulator we
developed to show that the proposed methods can dynamically
adapt storage placements and access pattern as workloads evolve
to achieve the best system level performance such as throughput.

I. INTRODUCTION

With the explosive increase in the amount of data being
generated by various HPC applications, developing resilient
and high-performance storage solutions becomes even more
of a challenge [1], [2]. Therefore, it is crucial to come up
with effective data placement mechanisms in a heterogamous
environment based on the nature of workloads, as well as the
properties of the underlying hardware such as their network
topology and bandwidth. On the other hand, both the work-
loads and the underlying hardware evolve over time, so it
requires algorithms have to be designed to take these changes
into their consideration.

One particular trend that has emerged in recent years is the
use of SSD drives in storage solutions to provide premium
services, as the read and write speed for SSD drives are
typically much faster compared to hard drives [3]. On the
other hand, SSD drives have different failure patterns where
repeated read and write operations of the same address blocks
will cause the drives to fail [4]. Furthermore, SSD drives are
also limited in capacity, meaning that it is not yet practical
to use them to completely replace conventional hard disks.
Therefore, how to effectively integrate SSD drives into the
design of storage systems for HPC environments becomes a

critical yet challenging task.
Existing algorithms to integrate SSD drives can already

be found in the literature [5], [6]. These methods, while
effective, are largely based on heuristic algorithms that are
either developed in isolation with the runtime workload, or are
based on static assumptions on the workload patterns, making
them unsuitable when the underlying workloads and demands
change over time.

To address such drawbacks, we present a holistic approach
where we aim to develop a framework that adaptively classifies
the popularity of data objects, adjusts their placement among
storage tiers by moving them between slower HDDs and faster
SSDs, and fulfills the needs of users with regard to their
I/O operation requirements. Formally, our developed algorithm
makes the following assumptions. First, we assume that the
storage hardware consists of both slower HDD drives and
faster SSD drives. Second, the user may have their own rules
for the placement of data, such as, a particular data object must
be stored on HDDs with three copies available for a certain
period of time, among others. Therefore, such rules must be
properly fulfilled during runtime.

Based on these assumptions, our proposed method makes
two contributions: first, it proposes a Markov-chain based
classification model to predict whether data objects will be
accessed frequently in the future based on their historical ac-
cess records; second, it develops an integrated data placement
engine that is based on linear programming for fulfilling the
requirements of throughput and reliability from the users. We
next describe these two contributions separately.

In the first contribution, we classify data objects based on
their access patterns, including both their access frequencies
and the particular workload that accessed them, so that we can
determine those objects that are most likely to be accessed
frequently in the future. Our method is based on training a
Markov chain model, and once such predictions are made,
we move those frequently accessed objects to SSD drives
under the constraint that the moving cost does not exceed the
predicted savings.

In the second contribution, we consider the challenge on
fulfilling the user policies on data placements, such as their
preferences on where to place the objects. To this end, we
develop a data placement engine that takes user policies
and the performance variation between storage devices, such978-1-4799-5671-5/14/$31.00 c©2014 IEEE



as the bandwidth and delays between two HDDs or SSDs,
as input, and generates a satisfying solution, if any, as the
output. The theoretical foundation of this engine stems from
linear programming, where we allow numerical methods to be
adopted to find solutions. For example, if the user specifies that
no two copies of a data object should be on the same rack,
such a requirement will be formulated as a constrain in the
linear programming model and be guaranteed in the solution.

The rest of this paper is organized as follows. We describe
the related work in Section II. The design is described in
Section III. The performance evaluation is given in Section IV.
We provide conclusions in Section V.

II. RELATED WORK

In this section, we survey several existing works related to
our paper. We classify these existing works into two categories.
The first category consists of existing works on data placement
algorithms for distributed storage systems, while the second
consists of those on hybrid storage systems that aim to leverage
SSD drives to improve data access performance.

As large-scale distributed storage systems have been ex-
tensively used in the HPC area, the problem of distributing
several petabytes of data among hundreds or thousands of
storage devices becomes more and more critical. To address
this problem, many data placement algorithms have been
proposed. For instance, Distributed Hash Tables (DHTs) have
been used to place and locate data objects in P2P systems
[7], [8], [9]. Another replica placement scheme called chain
placement was also proposed and applied to some P2P and
LAN storage systems [10], [11], [12]. Honicky and Miller
presented a family of algorithms named RUSH [13] that
utilizes a mapping function to evenly map replicated objects to
a scalable collection of storage devices, so that it can support
efficient additions and removals of weighted devices.

To address the reliability and replication issues of the RUSH
algorithm, Weil et al. proposed a scalable pseudo-random data
distribution algorithm named CRUSH [14]. Besides optimally
distributing data to available resources and efficiently reorga-
nizing data after adding or removing storage devices, CRUSH
exploits flexible constraints on replica placement to maximize
data safety in the case of hardware failures. Specifically,
CRUSH allows the administrator to assign different weights
to storage devices so that the administrator can control the
relative share of data each device is responsible for. However,
the device weights used in the CRUSH algorithm only re-
flect the capacities of storage devices, therefore, the CRUSH
algorithm may not be effective anymore for hybrid storage
systems consisting of both SSD and HDD devices, as these
two kinds of storage devices have totally different performance
characteristics.

Recently, efforts have been made to combine SSD and HDD
drives together to construct hybrid storage systems. In such
systems, SSDs are either used for caching purposes, or used
as more independent storage devices. For example, Srinivasan
et al. designed a block-level cache named Flashcache [15]
between DRAM and hard disks using SSD devices. Zhang et

al. proposed iTransformer [16] which exploits a small SSD
to schedule requests for the data on disks so that high disk
efficiency can be achieved. SieveStore [17] adopts a selective
caching approach in which the accesses of each block are
tracked and the most popular block is cached in SSD device.
In the second approach, SSDs are more independently used.
Chen et al. designed and implemented a high performance
hybrid storage system named Hystor [18], which identifies
data blocks that either can result in long latencies or are
semantically critical on hard disks, and store them in SSDs
for future accesses. In order to prolong the service life of
SSDs devices, Ren et al. proposed I CASH [19] to reduce
random write traffic to SSDs. Specifically, I CASH is an
approach that exploits the spacial locality of data accesses,
and only store those seldom-changed data blocks on SSDs.
Finally, ComboDrive [20] concatenates SSD and HDD into
one address space via a hardware-based solution, so that
certain data on HDD can be moved into the faster SSD space.

There are two main differences between existing works
on hybrid storage systems and our approach: first, most
existing works on hybrid storage systems only consider how
to improve the utilization of SSD drives, but they have ignored
the reliability and replication issues in HPC environments;
second, existing works have not considered the dynamic nature
of workflows, a nature that makes continuous training and
learning necessary. In our approach, we fully consider these
issues, and our method provides up-to-date predictions on
popular data blocks, so that we can store critical data on SSDs
well in advance.

III. DATA PLACEMENT ALGORITHM DESIGN

In this section, we introduce the design of the data place-
ment algorithm. We first present the problem formulation.
Then, we present an overview of our algorithm architecture.
Finally, we present a detailed description of its components
and related algorithms.

A. Problem Formulation

The core problem is formulated as follows. Given a set
of storage devices represented by HDDs and SSDs as the
hardware platform, our task is to find a data placement that
1) satisfies user polices on data placements, and 2) maximizes
the throughput of I/O operations from HPC applications. This
problem is challenging due to: 1) we don’t have complete
knowledge on future access patterns to data objects due to
the dynamics of workloads, 2) user policies can be highly
heterogeneous and may change over time. Therefore, if we
model such a problem as an optimization problem, its solution
is from a very large search space, such that it is very hard
to always reach the optimal configuration when something
changes, even such change could be slight. Furthermore, given
that the users’ request may change frequently, we would like
to be able to re-use previous calculation results as much as
possible, so that we can avoid the re-calculation when a similar
scenario is met in practice.



Fig. 1. The Design Architecture

B. Architecture Overview

We first present the design architecture of our data place-
ment algorithm. For this design, we consider the I/O workload
from user applications to include both read and write opera-
tions. All I/O workload are generated to access data objects,
which are minimal storage units in object-based storage sys-
tems. In practice, a large file can be divided into multiple
data objects which will be stored on single or multiple object-
based storage devices (OSDs). Note that the write operations
may be dominating for certain I/O workload, such as periodic
checkpoint [21]. The I/O workload from user applications may
also change over time, therefore, the solution should adapt to
the dynamic nature of the I/O workload.

Figure 1 shows the overall architecture, where the whole
procedure works as follows: the first core component, the clas-
sification model, is trained based on the access history of data
objects. In our current work, we concentrate on the historical
access frequency of data objects, while we leave exploiting
the access pattern (sequential/random read or write) to improve
data placement performance as our future work. After training,
it provides parameters for the runtime prediction model that
are used to predict the access popularity of data objects in
the future. Specifically, the predictions decide if an object is
going to have “recurring” or “non-recurring” accesses, based
on its history of accesses, as well as the particular workload
that accessed them. Such predictions are then used, together
with user demands, as the input for the storage placement
engine, whose goal is to generate an optimized placement of
data objects to storage devices so that the overall system level
performance on access delay and bandwidth can be improved.
Finally, the runtime object access traces are also used as input
for the classification model for continuous training purposes,
and keeping the parameters up-to-date.

C. Markov Chain based Workload Classification

In this section, we describe how the classification model
generates model parameters based on object access traces. In
our design, we adopt a Markov chain based approach.

Observe that there exists a tradeoff in the overhead of
training and the prediction accuracy. Therefore, we need to
achieve a good tradeoff in our design. Our approach has the
following key steps. First, we assume that we can keep the
access history for each data object. In reality, it may not be
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Fig. 2. Traces of Data Object Accesses in Frequency

practical to record a long access history for each data object
since in that case the storage overhead could be huge, instead,
only recent access history needs to be maintained and updated
periodically. Second, we model the access frequency of each
data object using a discrete-time Markov chain in which each
state represents a specific range of access frequency. With the
access history, we can estimate the parameters of the Markov
chain model. Third, by calculating the stationary distribution
of the Markov chain, we can predict the likelihood for the
access frequency of each data object to stay within certain
ranges in the long run. Finally, we rank each data object based
on the weighted sum of the stationary distribution, where the
weights are chosen according to the specific range represented
by each state in the Markov chain. A higher rank of the data
object indicates that it is more appropriate and efficient to be
moved or placed into low-latency, high-bandwidth drives such
as SSDs. We next describe these steps in more detail.

1) Collection of Access History of Data Objects: Fig. 2
demonstrates the access frequency (here the “access” includes
both read and write operations) of a data object during one
month from the LASR traces [22], which include I/O activ-
ities of benchmark applications for the SEER project, which
observes users’ file access patterns across storage networks.
The X axis of Fig. 2 is the range of one month time that has
been divided into 720 time periods (each period is 1 hour). The
Y axis represents the number of times the data object has been
accessed during each time period. As the storage overhead for
maintaining the entire access history of each data object is
not cost-effective, we only maintain recent access history of
each data object and use such access history to build a Markov
chain model to predict the future access frequency. As shown
in Fig. 2, only the access history in the dotted window is used
to train the prediction model, where the window will slide
with time so that we can implement online prediction for data
objects access frequency.

2) Markov Chain Predication Model: With the access his-
tory of each data object, we build a Markov chain model to
predict the future access frequency of data objects. First, we
need to determine how many states the Markov chain should
have and the range of access frequency each state represents.
For example, as shown in Fig. 2, if the maximum number
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of access times during an observation period is 50, then, for
example, we can divide 50 evenly into two ranges, and build
a Markov chain model that has three states: 0, (0, 25], and
(25, 50], respectively. If during a time period, there is no access
of the data object, then the Markov chain will stay in state 0.
If the number of access times is larger than 0 but less than
25, then the Markov chain will stay in state 1, and so on. The
transition diagram of the Markov chain is shown in Fig. 3.

Second, we transform the access history to the state transi-
tion sequence of the Markov chain based on the specific range
each state represents. For example, after transformation the
state transition sequence of access history shown in Fig. 2 is:
1,1,1,1,1,0,0... Based on this state transition sequence, we can
estimate the transition probabilities between every two states
and construct the transition matrix of the Markov chain shown
below:

T =

p00 p01 p02
p10 p11 p12
p20 p21 p22

 (1)

According to the properties of Markov chain, we have:

lim
n→∞

Tn =

π0 π1 π2
π0 π1 π2
π0 π1 π2

 (2)

in which π = [π0, π1, π2] is called the stationary distribution
of the Markov chain. We can simply calculate π through
computing a normalized multiple of a left eigenvector E of
the transition matrix T with an eigenvalue of 1:

π =
E∑
i ei

(3)

where ei is the i-th element of eigenvector E. Since the
stationary distribution π reflects the probabilities that each
state of Markov chain will be visited in the future, which can
be used to predict the access frequency of each data object.

Based on the predicted access frequency in the future,
we rank the data objects so that we can determine which
data object should be placed or moved to SSD drives. Note
that, however, even if the calculated stationary distribution
tells us state 1 will be visited with higher probability than
state 2, to rank the importance of the data object, we must
consider that state 2 represents a higher access frequency.
Therefore, we use a weighted sum of the stationary distribution
to rank the importance of the data objects, where the weights
are defined by values that are proportional to the access

N Total number of storage drives
M Total number of data objects
csi Capacity of storage drive i
dsi Size of data object i
fi Predicted frequency of access for data object i
bij Bandwidth for the link connecting storage drives i and j
ati Average throughput for storage drive i
eij Whether data object i is stored on storage drive j (0 or 1)
cpi The minimum number of copies for data object i

TABLE I
NOTATIONS OF SYMBOLS

frequency ranges that the states represent. For example, if
we obtain the stationary distribution of the data object as
π = [0.31, 0.56, 0.13], and we assign weights [0, 10, 20] to
the three different states, we can calculate the rank of the data
object by rankobjx = 0.31× 0+0.56× 10+0.13× 20 = 8.2.
We can then compare the ranks of objects, and provide input
for the placement engine.

D. Finding Placements under User Polices

Once we obtain the predicted popularity of data objects,
i.e., their ranks, the next step is to find an optimized placement
solution such that the access latency is minimized, while satis-
fying users’ placement policies. In this aspect, we assume that
users’ requests will be parametric, meaning that all requests
will be embedded into equations or constraints. For example,
by using the notations in Table I, a requirement on the number
of redundant copies of a data object i stating that at least three
extra copies must be made can be expressed as cpi > 3.

Our solution to this problem is by formulating the placement
problem in a mathematical optimization as follows:

We want to maximize:∑
i∈M

fi ×max[∀j ∈ N, atj × eij ] (4)

subject to constraints such as:∑
j∈N

eij = cpi,∀i ∈M, (5)

∑
∀i s.t. eij=1

dsi ≤ csj ,∀j ∈ N, (6)

In this short paper, we only give a description of an easier
scenario in these equations. In this example, Equation 4
specifies that we want to find a way that assigns data objects
to storage devices such that the weighted access throughput
by the access frequency is maximized. Note that we use the
equation atj × eij to filter those storage devices where the
particular data object i is stored on: if i is stored on device j,
we know eij = 1, otherwise eij = 0. Hence, finding the max
of them translates into finding the storage unit with a copy of
data object i that has the highest throughput.

On the other hand, this optimization goal is subject to two
or more constraints. In this example, we only consider two
of them, in Equation 5 and Equation 6, respectively. The first
constraint specifies that each storage drive j should not contain
more data objects than its capacity, while the second constraint
specifies that the number of duplicate copies of a data object
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should be set according to the users’ placement polices. If a
data object does not need to have duplicates, its cp value is
set to 1 by default.

In more complex scenarios, the users may have additional
constraints. As we mentioned earlier, such constraints are pa-
rameterized, meaning that we can easily add more constraints
to the formulation above. Finally, even the optimization goal
can be adjusted. For example, if we only want to minimize
the access delay rather than the throughput, we can change
the Equation 4 accordingly.

Based on this formulation, we notice that the optimization
is reduced to a linear programming problem where we can
use numerical methods to recalculate its solution periodically
in the placement engine. Note that the engine is operating
independently of the rest of the system. Doing so does not
require the engine to be tightly integrated, so that we can
easily change the engine’s implementation as needed, which
gives us additional flexibility.

IV. SYSTEM EVALUATION

In this section, we systematically present the evaluation
of the proposed algorithm. We first present a study of the
traces of data object accesses, based on which we evaluate
the performance of our learning algorithm by replaying them.
We use a long-term I/O traces, LASR traces [22], which were
collected at system-call level. We track the access frequency
of different files during their lifetime. Specifically, we divide
the time span into hundreds of time slots and each of which
has same length. We then count how many times each file
has been accessed during each time slot. In the LASR traces,
we eliminate those files which have only been accessed less
than 10 times during their lifetime (the access of these files
almost has no impact on the performance of the storage
system) and focus on the remaining ones (1,703 files) which
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Fig. 6. Future Access Times of Data Objects

are more frequently accessed. By analyzing the access of
these frequently accessed files, we find out that these files
can be roughly put into two categories according to their
access patterns. The first category contains files that have
constant access patterns. Files in this category have been
frequently accessed during their whole lifetime, without too
much difference between the maximum and minimum access
periods. Fig. 4 shows a typical file falls into this category. The
learning algorithm, especially the Markov chain approach can
achieve a higher level of accuracy for this kind of files. The
second category is files with a bursty access pattern. Files in
this category have only been accessed at very few time slots,
but the access counts for those time slot can be very large.
Fig. 5 shows a typical file falling into this category. For files
belong to second category, it is pretty hard for any learning
algorithm including Markov chain approach to train a model
to accurately predict their future access frequency.

To save the evaluation time, we did not use the entire
LASR traces, instead, from the dataset we select traces of
files that have been accessed more than 1,000 times (traces of
40 different files). For each trace we use the first half as the
training data to train our Markov prediction model while use
the other half as the testing data. As illustrated in Fig. 6, the
bars represent the future access frequency of the 40 different
files which are extracted from the testing dataset. Since we
only have limited SSD storage space, our goal is to store the
files that will be most frequently accessed in the future on SSD
devices to improve the average data access throughput. For
example, if we can only put 10 of 40 files on SSDs, as shown
in Fig. 6, the light-colored bars illustrate the files predicted
by our Markov model that are required to be placed on SSD
devices. From the results we can observe that, 7 of 10 files that
have the highest future access frequency have been chosen.

We next choose random selection approach as baseline
and compare the average read throughput achieved by our
Markov prediction model with that achieved by random object
selection. Here the random object selection means that we
randomly choose several data objects (files) and put them
on SSD devices. The number of data objects that can be
placed on SSD devices is also limited. For example, in the
simulation, we vary the number of data objects that can be
put on SSD devices from 2.5% to 50%. Besides, we set
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the read throughput of SSD devices as 550MB/s and that of
HDD devices as 120 MB/s, consistent with typical datasheets
provided by manufacturers of storage devices [4]. As shown
in Fig. 7, our object selection approach can achieve higher
average read throughput than random selection, demonstrating
the effectiveness of our proposed approaches.

V. CONCLUSIONS

In this paper, we presented a study of developing a hybrid
configuration (SSD and HDD) for storage needs of HPC
environments. Specifically, we proposed an integrated object
placement framework with adaptive learning algorithms. The
method placed data objects with considering both the popular-
ity of the data and the capability of different storage devices,
so that the data access performance can be optimized. The
method also integrated a Markov chain algorithm where real-
time classification is employed to predict the popularity of
data object accesses, so that they can be placed on, or migrate
between SSD or HDD drives in the most efficient manner. Our
preliminary results based on realistic data traces demonstrate
that this approach is highly promising, and achieves better
performance than benchmark methods such as pure random
selections.
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