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Abstract—In this paper, we present r-kernel, an operating sys-
tem kernel foundation specifically designed to improve software
reliability in networked embedded systems. The key novelty of
r-kernel lies in that it exploits the time dimension of software
execution to improve robustness. Specifically, r-kernel keeps track
of the execution of applications through checkpoints. If one
application has been determined to have failed, r-kernel performs
rollback operations to restore its state to one of those checkpoints
created earlier. For the second round of operation, r-kernel
provides a safe mode environment to avoid triggering the same
bugs. Finally, if the whole system has crashed, r-kernel relies on
watchdog timers to reset the node, and develops a technique
called past-run trace reconstruction to locate and report the
thread that had caused the system failure. We have implemented
r-kernel based on the LiteOS operating system kernel running
on the popular MicaZ platform. We demonstrate that it achieves
the desired goals above with acceptable overhead.

I. INTRODUCTION

One key feature of the emerging networked embedded sys-
tems, such as wireless sensor networks, is the tight interaction
between software modules and the physical world [12], [16].
Because of the tremendous cost of system failures, enormous
efforts are invested in debugging and testing prior to system
deployment. However, as software complexity increases, fail-
ures may still occur after deployment since some bugs could
slip through even the most thorough debugging and testing.
Further, the unique nature and deployment environment of
networked embedded systems, combined with their limited
system resources, make them particularly vulnerable to new
types of bugs such as those caused by interaction with the
physical environment [4]. When these bugs cause failures,
there are typically no patches available yet. This considerably
worsens the situation, especially for those deployments that
are meant to be autonomous, long term, and without human
intervention.

To ensure system reliability, the most urgent task is to
ensure that normal system operations are not interrupted by
component failures. To achieve this, the system should be
robust and resilient. One commonly followed approach in
embedded software development is using watchdog timers. In
the normal execution of an application, the watchdog timer
is reset periodically to prevent system reboots. If the system
hangs, the watchdog timer will eventually time out and cause

a system reboot, restoring the system to its initial state, which
is usually the most tested and understood.

However, reboots also have considerable drawbacks in caus-
ing data loss and energy overhead. For example, in routing
protocols of sensor networks, it is common practice for sensor
nodes to keep neighbor information such as their IDs and link
quality into an internal neighbor table. After reboots, such
information will be lost. Reconstructing neighbor tables will
incur extra energy overhead. As another example, consider an
application consisting of multiple threads. If one thread fails,
the following system reboot will cause every thread on the
node to be restarted, leading to unnecessary state loss and
energy costs.

The second, less obvious problem with reboots is that while
they can avoid certain non-deterministic bugs through the re-
execution of the same program (i.e. bugs that do not always
occur), they are useless to handle deterministic bugs, such as
those caused by memory leaks or stack overflows. In fact, the
same bug will likely cause reboots again and again until the
battery runs out, or a patch is made available. For example,
a bug related to priority inversion caused the Mars Pathfinder
probe to reset again and again with the use of a watchdog
timer, until a patch was available to fix this bug [13].

To address the above problems, we present r-kernel, a
comprehensive, holistic solution to improve the robustness of
embedded software against a wide range of failures. It targets
on extremely resource-constrained platforms as represented by
MicaZ nodes, therefore, its design decisions have to be tailored
to reduce overhead and improve efficiency.

The central idea of r-kernel is that it provides a snap-
shot/rollback mechanism for individual application threads.
When the system does not fail, it makes progress and takes
checkpoint snapshots either periodically or according to ap-
plications’ needs. When a failure is detected for a particular
thread, r-kernel performs rollback operations by restoring the
thread to the last known correct state. If the same problem
persists, further rollback operations to even earlier checkpoints
are needed until the thread eventually gets rebooted. To
provide robustness against bugs, every time a thread gets re-
executed, it runs in a safe mode with a novel technique called
system call shadowing. Specifically, this technique is based
on the observation that in our target software environment,
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application threads are interfaced with the kernel through
a suite of customized system calls. Therefore, we change
system call implementations by replacing the original ones by
safer, but more complicated ones with higher overhead. We
demonstrate that they can protect against certain deterministic
bugs to avoid repeated system failures.

Finally, it is possible that a bug may corrupt the entire
memory state, leading to unpredictable deadlocks before the
rollback mechanism can be activated. To this end, we introduce
the last defense line of r-kernel, by integrating the use of
watchdog timers. This mechanism causes the entire node to
be rebooted when necessary, independently of the execution
sequence of the CPU. To avoid information loss, r-kernel
allows selectively storing critical information, such as context
switch history, into non-volatile memory (such as EEPROM)
with additional overhead. After the node gets rebooted, such
non-volatile history, which we term as past-run traces, are
used to infer which threads have caused failures, so that the
same thread will not crash the node for the second time.

To the best of our knowledge, this is the first piece of
work that implements thread-level checkpoints and rollbacks
in resource-constrained embedded systems. It addresses not
only non-deterministic bugs, but also deterministic bugs. It
integrates multiple techniques such as checkpoints, rollbacks,
system call shadowing, watchdog timers, and past-run traces,
so that we can achieve considerably improved system robust-
ness with low overhead. This combination is unique in its kind,
and most design decisions have been carefully considered to
fit on the resource-constrained sensor nodes. Therefore, this
work is considerably different from the checkpoint/rollback
implementation in traditional systems, such as servers. More
specifically, the checkpoint/rollback mechanisms have to be
re-designed based on the particular operating system require-
ments, the system call shadowing technique is unique to the
embedded system environment, and the past-run trace recon-
struction has to fit within resource constraints. In summary, we
believe r-kernel is very valuable for achieving a new level of
robustness in systems where such robustness is most valued:
autonomous, resource-constrained, and networked embedded
systems.

The rest of this paper is organized as follows. Section II
presents the knowledge background of the LiteOS operating
system on which r-kernel is implemented. Section III presents
an overview of r-kernel design. Section IV presents the imple-
mentation of r-kernel. Section V demonstrates the performance
of r-kernel through extensive evaluations. Section VI reviews
the state of the art. Section VII summarizes this paper.

II. BACKGROUND

r-Kernel builds on the LiteOS operating system [7], a thread-
based, Unix-like operating system environment developed for
resource-constrained sensor networks. This section provides
the necessary background on the LiteOS operating system,
and provides the context for r-kernel’s design choices and
implementation decisions.

Fig. 1. The Architecture of LiteOS

LiteOS is an operating system specifically designed for
ultra-low-power microcontrollers with limited RAM and stor-
age space. LiteOS currently supports 8-bit AVR microcon-
troller based sensor nodes running at 1 − 8 MHz that has
4− 8kB of SRAM, 128kB of flash memory, and up to 512kB
of external flash storage space.

The operating system uses threads as basic units of ab-
straction. Threads may be created by the LiteOS kernel or
by existing threads at runtime, and are written in the C
programming language. The LiteOS kernel itself is a thread
that is initiated during boot time, and is responsible for tasks
ranging from interactions with hardware to management of
user created threads. The LiteOS kernel is interfaced with
user threads through a suite of system calls. System calls
not only provide software compatibility by ensuring that any
modification to the kernel will be transparent to the application
side, but also simplify application development by providing
a unified API interface for the users. Compared to directly
invoking kernel functions, each system call adds 5 instructions
(10 CPU cycles), a sufficiently low overhead to be supported
on microcontrollers. Figure 1 shows the conceptual memory
layout of the kernel and the applications, and the system
calls that bridge them. Further details on the LiteOS operating
system can be found in the LiteOS paper [7].

Impact on the Design of r-Kernel Our design choices of
r-kernel is significantly affected by the particular architecture
and requirements of LiteOS. Specifically, the checkpoint-
rollback support is enabled by the thread-oriented design of
LiteOS. The snapshot images created for threads are stored in
the file system of LiteOS. We note that, however, r-Kernel is
not intended to be developed for LiteOS only. Some recent
innovations in TinyOS, the currently most popular operating
system for sensor networks, also started to adopt threads and
system calls [15], making it possible for porting r-kernel to
TinyOS.

Another impact of LiteOS is its organization of system
calls. The original version of LiteOS implements a suite of
56 system calls aligned consecutively. We re-organize the
memory layout of system calls so that shadow system calls are
aligned to the end of their corresponding non-shadow system
calls. This design allows new shadow system calls to be added
easily, and leads to more compact code with smaller memory
footprint.

The third impact of LiteOS is its user interaction. We
extend the Unix-like interface of LiteOS to provide support
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Fig. 2. The Workflow of r-Kernel

for additional commands that enable snapshot and rollback
operations through the shell. Such user interaction support not
only allows user intervention when necessary, but also helps
bug detection.

III. SYSTEM DESIGN

The three main features of r-kernel are rollback of threads,
system call shadowing, and past-run trace reconstruction with
watchdog integration. A typical application that is built on
r-kernel is assumed to consist of a collection of small, well
isolated threads that collectively form the application fabric.
Inter-process communication follows a messaging system, and
no memory is shared between threads. Specifically, the design
of r-kernel has the following goals.

A. Design Goals

• Effectiveness: this goal is measured by its ability to per-
form: (i) checkpoint and rollback operations accurately,
(ii) avoidance of certain deterministic bugs successfully,
and (iii) support for user interaction.

• Simplicity: as r-kernel provides APIs for user applica-
tions, one demanding goal is that such APIs are easy
to use. Our experiences with other systems tell us that
simple APIs are more likely to be adopted compared to
complex ones.

• Efficiency: sensor network platforms suffer considerable
resource constraints (in CPU, memory, and energy over-
head). Therefore, using resources efficiently is a demand-
ing goal. r-Kernel is designed with efficiency in mind so
that it can be integrated into existing operating systems
with acceptable overhead.

The above design goals motivate our design choices
throughout the remaining of this section.

B. System Workflow

Figure 2 shows the workflow of r-kernel. First, the system
reboots and starts the watchdog timer. It then loads application
threads. There are two ways of loading a thread: internally or
externally. For internal loading, the thread has been compiled
together with the kernel. For external loading, the thread
is separately compiled, and will be loaded from the file
system. Once threads are loaded, they are executed as normal.
Periodically or in response to the requests of the application
(through programming APIs detailed later), checkpoints will
be created by the kernel. When this happens, all information
needed for the rollback operation, such as thread contents,

current packet queue, and file operators, are copied into a
specially named file in the non-volatile flash.

As illustrated in Figure 2, rollback operations will be
triggered when software failures are detected. Such detection
is either application-specific, or OS-assisted. In the work flow,
we assume a mechanism has been developed to determine
whether failures have occurred. For example, by checking the
memory contents of critical variables, we can know whether
certain types of failures, such as memory overflows, have
occurred.

When a rollback occurs, the same program will be executed,
but under a different system call environment. This mechanism
is motivated by the needs to protect against certain determin-
istic bugs. We hope the differentiated execution environment
will help the software survive the previous failure, and proceed
as normal. If this is what happens, once the execution passes
the previous spot of failure (as measured by timestamps), the
system call environment will be restored to normal and the
program execution will proceed. If such re-execution is not
successful, then either an even earlier checkpoint will be tried,
or the program thread will be rebooted or terminated.

C. Programming APIs and User Interface

Our design goals call for an easy-to-understand interface
for users. We propose the following programming APIs. The
APIs in the first category are related to checkpoints. This in-
cludes creating a new checkpoint createCheckpoint, check-
ing whether a checkpoint exists existCheckpoint, deleting
a checkpoint deleteCheckpoint, and performing rollback
operation to a previous checkpoint rollbackCheckpoint. The
APIs in the second category are related to the operating system
environment, such as changing the mode of system calls
enableSafeMode and disableSafeMode. The third category
of APIs are auxiliary, such as getting the current timestamp
getCurrentTime. Together these functions provide compre-
hensive control on checkpoint behavior.

Following is a simple example on the behavior of check-
points.

1 checkpointIndex = createCheckPoint();
2 printf("Point A,");
3 rollbackCheckpoint(checkpointIndex);
4 printf("Point B,");

In this example, line 4 will never be executed as the program
returns to the first checkpoint again and again. The printing
result of this segment (using the serial port to receive incoming
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Fig. 3. The Architecture of r-Kernel

data from MicaZ) as: Point A, Point A, .... Note that
“Point B” will not be printed.

Besides programming APIs, we also modified the LiteOS
shell to support user side commands to perform tasks such
as creating snapshots and thread rollbacks. Combined with
the debugging commands of LiteOS that allow breakpoint
operations, these commands provide more flexibility to the
end user to increase the level of controllability of threads for
runtime environments.

D. Checkpoint and Rollback Engine

The checkpoint-and-rollback engine (CRE) is the most im-
portant component in r-kernel. Its role is illustrated in Figure 3.
Its key mechanism is to transparently restore an application to
a previous checkpoint upon software failure or user request,
with the help of a snapshot image that was previously stored
in external non-volatile flash as a file. We emphasize that
this design choice is significantly different from related work,
especially those targeting server applications [18], [19], which
store checkpoint images in memory. Our design choice is
motivated by the fact that the RAM is usually the most con-
strained resource on embedded devices. Hence, when multiple
snapshot images need to be stored, non-volatile space has to
be exploited.

Performing a rollback operation is straightforward. CRE
simply reinstates the program from the snapshot associated
with the specified checkpoint. As shown in the code sample
in the previous section, each checkpoint is associated with
a unique index, which is generated by reading the current
timestamp on the node. This index is passed as a parameter to
the rollback function to locate the right version of the snapshot
image. Finally, CRE is also responsible for other functions,
such as replying to queries regarding whether a snapshot image
still exists, or deleting a snapshot image from the file system.

There are two challenges for designing a practical and useful
CRE. First, CRE needs to handle the interaction between the
thread and the operating system in a proper way. For example,
if a thread requests dynamic memory allocation, suppose that
it gets a memory chunk S, makes changes to the content, and
initiates a checkpoint C, then, the resulting snapshot image
should include the contents of the allocated memory chunk S.
The reason is that the thread might later release S, and then
tries to restore to the previous checkpoint C. Since S was
allocated at checkpoint C, it needs to be properly restored
during rollback to ensure an identical execution environment
at checkpoint C. Generally, the challenge is that CRE should

not only restore the RAM contents of a thread at a checkpoint,
but also its allocated resources from the operating system.

Second, CRE needs to provide maintenance of multiple
checkpoints, as this could impose a significant space overhead.
For example, if periodic checkpoints are taken, old snapshot
images may gradually become useless as the thread no longer
needs them. Therefore, CRE should remove such out-of-date
snapshots to save space. We next describe how we address
these two problems in the design of CRE.

Handling Allocated OS Resources
To handle the interaction between threads and the operating

system properly, the first concern is that CRE needs to
keep snapshots of their allocated operating system resource.
We consider three types of resources, including file control
data structures for opened files, dynamic memory allocation
contents, and obtained resource locks. Common to these
system resources is that they may be released later during
the execution of the program. When a rollback occurs, CRE
tries to obtain such resources again to ensure that the same
execution environment is provided to the threads. However,
note that it is well possible that such system resources are
temporarily unavailable during rollback. For example, a lock
might be temporarily held by another thread, or a chunk of
dynamic memory with the same size may not be available. In
such cases, the thread will be temporarily blocked until the
resource requirements are met for the rollback operation.

The second concern is related to posted tasks (by the thread)
and received packets (to the thread) that have yet to be
processed by the OS kernel. The reason is that these tasks
or packets may affect the execution of the thread later. If
they are not properly restored (i.e., they are processed by the
kernel after a checkpoint, and then CRE wants to restore the
thread to this checkpoint), the execution of the thread after
rollback might be different. Therefore, both posted tasks and
received messages need to be stored in the snapshot images.
Note that, however, after rollback, the timing of the delivered
packets will be different from the original, as CRE does
not record when an asynchronous event gets delivered to an
application. The underlying design philosophy is that r-kernel
purposely introduces nondeterminism into the execution of the
programs to avoid any potential problems during earlier rounds
of execution. This makes our work considerably different from
previous work that focuses on replaying the sequence of events
in the exact order and timing requirements [1], [21], and better
than them in avoiding triggering the same bugs.

The third concern relates to the changes one thread makes
to the underlying OS environment. For example, during the
execution of a thread, it may set the radio channel according
to its own needs. To address such changes, at each checkpoint,
a set of system environment parameters, including the radio
frequency, power level, and percentage of CPU usage, are
stored. During rollback, such parameters are restored to their
earlier values so that the execution environment is identical as
the original checkpoint.

The implementation of CRE does have one limitation: it
does not provide rollback support on file operations. That is,
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if a file has been updated after a checkpoint, it will not be
recovered to its original state. This design choice is motivated
by the observation that in sensor network applications, most
applications only use the file system as the place for storing
sensing data. Even if applications fail, the sensing data are still
valuable and should not be deleted. Based on this premise,
we find that this design choice will fit the needs of most
applications. Besides, this design choice helps conserve the
most amount of useful data for application purposes.

Checkpoint Maintenance
A possible problem with maintaining multiple checkpoints

is that this imposes a significant storage space overhead.
One simple way to save space is that whenever a rollback
to a checkpoint happens, all following checkpoints will be
removed. However, on resource-constrained sensor nodes,
such an approach is not sufficient. To maintain checkpoints
effectively, we develop an adaptive approach that maintains
checkpoints based on i) the current system load; and ii)
the predicted usefulness of the snapshot images. Formally,
suppose r-kernel takes checkpoints periodically, we can use
two schemes to keep those checkpoints: one is to keep intervals
between checkpoints to be constant, yet only storing the most
recent checkpoints; the second is to keep exponential landmark
checkpoints, deleting redundant checkpoints on the run. In
both cases, r-kernel keeps track of the current CPU utilization.
If the system is busier than a certain threshold, the snapshot
activity is temporarily suspended to reduce its impact on
system performance.

E. System Call Shadowing

While several types of failures may be avoided by re-
executing the same code with different timing, such as race
conditions and deadlocks, such an approach cannot address
deterministic bugs, as illustrated in the following example.

char *buffer = malloc(100);
/*some more code here*/
buffer[100] = 1;

In this example, if the memory address buffer[100] has
been allocated to another thread, it is likely that a hidden fault
has been introduced into the system. If this fault manifests
itself with a failure, no matter how many rollbacks are
performed, the system is going to experience failures again
and again. The example motivates us to design system call
shadowing to avoid such deterministic bugs.

Our design stems from the observation that the library
functions in LiteOS, such as malloc, are bridged to the kernel
implementation through a suite of system calls. We employ a
novel and affordable approach to redirect system calls. To this
end, we modified and re-organized the LiteOS system calls in
such a way that for some calls, we develop alternative imple-
mentations. For example, the new implementation of malloc
no longer assigns memory chunks consecutively. Instead, it
adds paddings between two assigned memory chunks. This
way, the bug as shown in the previous example may be avoided
if a proper padding size is chosen. We call such an approach

as system call shadowing, and with them, we can run the
applications in a safe mode.

There are two challenges on the design of shadow system
calls. First, which system calls should have shadows? Second,
how to modify applications to invoke the correct system calls?

We focus on two categories of system calls. The first
category is related to memory operations, and the second is
related to process scheduling. Specifically, the shadow system
calls support the following environmental changes:

(1) Padding buffers. This approach modifies system calls
such as malloc(), realloc(), calloc(), and free(). It
adds fixed-size paddings to both ends of any allocated buffers
during re-execution to avoid buffer overflows. Because this
method reduces the amount of allocatable dynamic memory,
it should only be enabled in the safe mode.

(2) Zero-filling buffers. This approach avoids some failures
caused by uninitialized reads. It fills any allocated buffer space
with zero values. Since it incurs extra time overhead, it should
be enabled only in the safe mode.

(3) Thread scheduling. This approach modifies the priority
of a thread during its execution to avoid failures caused
by concurrency issues such as race conditions. Specifically,
whenever a new thread is created, we artificially increase the
scheduling time share of the thread so that it is less likely
for this thread to experience context switches during some
unprotected critical region.

The second problem is how to modify applications to invoke
correct system calls. To this end, we rely on a technique called
dynamic instrumentation, which modifies the binary images of
applications to point to the right system calls (we previously
adopted this approach to insert dynamic tracepoints [8]).
Specifically, each invocation to a system call is started with
a call instruction followed by the address of the system call
portal. The dynamic instrumentation process walks through the
binary images of the applications, and modifies the addresses
of the system calls so that they point to their shadows.

F. Integration with Watchdog Timers and Past-run Information

The last defense line against failures comes from the inte-
gration of watchdog timers. These timers reset the system if
the kernel enters a deadlock or other failure modes when the
kernel can no longer periodically reset the watchdog timer.
When this happens, the entire kernel will reboot. For such
scenarios, one research challenge is how to avoid the same bug
from being triggered again and again (which causes the system
to enter an endless reboot loop). To this end, we develop a
technique called past-run trace reconstruction to infer which
thread has caused the reboot, so that the same thread would
not be executed again.

Specifically, in our design of past-run trace reconstruction,
to avoid traces from being lost, we store them in non-volatile
storage, i.e., EEPROM (on some devices, if EEPROM is
not available, on-board flash storage can also be used with
additional overhead). Specifically, the following two types of
data are stored as traces during the normal execution: (i) the
history of context switches, stored with the associated index
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Fig. 4. Checkpoint File Organization

sequence of threads being executed, and (ii) the checkpoint
and rollback operations, stored with timestamps. Both types
of information are stored in a circular buffer, so that the total
storage space is limited. Only the most recent history is stored,
while old history is automatically removed. Upon reset, r-
kernel searches for such information in the circular buffer.
Combined with the snapshot images that were previously
stored in the file system (also non-volatile), r-kernel is able
to determine the last user thread that was running prior to
the system reboot. This thread will be temporarily disabled,
and reported as errors for debugging purposes. Our experiment
results show that this approach is able to pinpoint the failure
thread correctly in all our benchmark cases.

IV. IMPLEMENTATION

In this section, we describe the implementation choices
made to r-kernel. It has been implemented on the MicaZ
platform, and it is expected to work on Mica2 and IRIS
as well, with small modifications, because all these devices
share similar microcontroller components. We systematically
describe the thread rollback component, the system call envi-
ronment, the watchdog timer integration, and finally, past-run
trace reconstruction.

A. Implementation the Thread Checkpoints and Rollbacks

While r-kernel makes several improvements over the LiteOS
kernel, it also maintains the original functionality of LiteOS.
All applications running on LiteOS are allowed to work. r-
Kernel does not require additional hardware nor affect program
execution, unless when it is turned on. Therefore, it can be left
on the sensor node to be used only on demand.

The central component of r-kernel is its checkpoint and
rollback system. In practice, the rollback functionality is
implemented as a stand-alone thread. Once activated, the
checkpoint-and-rollback thread initiates activities upon receiv-
ing inter-thread messages from user threads. As mentioned
in Section III-C, the user thread can invoke several APIs to
perform various activities. These APIs are implemented in
the standard library of LiteOS programming environment by
sending messages to r-kernel components. Specifically, in our
improved LiteOS, we develop a message passing mechanism
where we treat external and internal messages uniformly: all
messages are addressed to a destination node with a port
number. If the destination is another node, a corresponding
routing/MAC layer algorithm is invoked. If the destination is
0, it means that this message is sent to the current node itself.
On the thread side, each thread subscribes to one or more port

Fig. 5. Shadow System Call Implementation

numbers. Whenever an incoming message to this port number
arrives, a linked function is invoked that typically wakes up
the waiting thread. The thread then takes the incoming packet
from the queue and processes it. When this packet comes from
another thread on the same node, e.g., messages sent from the
user thread to the r-kernel component thread, such a packet
serves the functionality of inter-thread communication.

B. Implementation of System Call Environments

To understand the implementation of system calls, Figure 5
shows the process of a typical system call initiated by the
application code. Note that we organize system calls into
11 categories based on functionality. To switch between the
normal mode and the safe mode, the entry addresses of the
system calls are modified to point to their shadow imple-
mentations using dynamic instrumentation. So far, we have
added shadows to two categories of system calls: thread system
calls and memory system calls. The reason that these two
categories are selected is because based on our experiences,
we find it most tricky to deal with bugs related to thread and
memory management. Thus, we first address these bugs in this
preliminary study.

1) Thread system calls: In this category, we modify a
critical function createThreadSystemCall. More concretely,
in the safe mode, when a new thread is created, there are
three differences made in the safe mode: first, this thread is
created with an isolated memory chunk instead of a consec-
utive memory chunk to minimize its effects on other threads;
second, this thread is created with a slightly larger chunk of
RAM compared to requested to mitigate the effects of potential
stack overflows; third, this thread is created with the highest
priority, regardless of the actual priority requested by the user,
to reduce possible concurrency bugs due to context switches.

2) Memory system calls: In this category, we modify all
system calls, including malloc, free, and realloc. More
concretely, in the safe mode, there are three differences: first,
to avoid dangling pointers, we do not immediately re-allocate
the same chunk of memory that has been released. Instead,
we follow a circular approach where the memory chunks
are allocated in a circular order, so that the most recently
released memory will be the last re-allocated; second, we
set memory chunks with all zeros to avoid bugs caused by
uninitialized reads; third, we insert paddings to the beginnings
and endings of allocated buffers to reduce the possibility of
buffer overflows.
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C. Implementation of Watchdog Timers and Past-run Trace
Reconstruction

In our implementation of watchdog timers, we modified
the LiteOS kernel so that it periodically resets the watchdog
timer in the main loop. Consequently, if the watchdog timer
fires, we are certain that the node is no longer responsive,
and should be reset. To help reconstruct past-run traces after
a reset, we meet the challenge that after a reset, all RAM
contents will be erased. Therefore, we keep a circular queue in
the EEPROM to store the major actions taken by the kernel.
Currently the following actions are stored: loading threads,
context switches, checkpoint creations, checkpoint deletions,
and thread terminations. Whenever these actions happen, an
action index together with simple parameters are stored into
the EEPROM circular buffer. Currently, we allocate 1024 bytes
of the 4096 bytes of EEPROM on MicaZ for this purpose
(starting from address 2701 to avoid conflicts with the file
system usage of EEPROM). This way, when the node wakes
up again, the contents of EEPROM together with the file
system status will be used to recover the past-run traces.

V. EVALUATION

In this section, we evaluate the performance of r-kernel.
Our evaluation consists of three parts. First, we measure the
performance of the checkpoint/rollback mechanism. Second,
we measure the slowdown of applications caused by logging
context switches. Finally, we present the performance of user
side commands such as snapshot in terms of responsiveness.

We first measure the performance of checkpoint/rollback
mechanisms. Figure 6 shows the performance of the snapshot
and rollback actions measured in terms of delay. In this ex-
periment, we select five benchmark applications, as illustrated
on the X axis, and measure the average time for snapshot
delays and rollback delays. Since these applications require
increasing RAM usage, we set the memory consumption of
each application, in terms of bytes, to be 100, 150, 200,
250, and 300 bytes, correspondingly. This memory allocation
includes not only the static RAM usage, but also the dynamic
stack of each application. We measure each application for
20 times, and plot the average delays. The time measurement
process relies on a cycle-accurate timer on MicaZ nodes to
collect the number of cycles between two timestamps, which
is then converted into elapsed time. As illustrated in this figure,
the increasing delays are primarily caused by the time on
file system operations: larger programs lead to an increase in
snapshot image sizes, which takes longer to create and read.
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Fig. 7. Limitation of File System Capacity

Snapshot Thread Blink SenseToRfm Oscilloscope SenseLightToLog Flooding

Code 

(without S/R)
2028 302 598 914 1672 1176

Code (with S/R) N/A 736 1034 1348 2106 1610

Increase N/A 143.7% 72.9% 47.4% 25.9% 36.9%

RAM 

(without S/R)
95 2 34 95 144 98

RAM (with S/R) N/A 28 62 124 172 126

Increase N/A 1300% 82.3% 30.5% 19.4% 28.5%

Fig. 8. Comparison of Memory Footprint

Our next experiment shows the impact of file system capac-
ity on storing snapshot images. Specifically, we increase the
periods of making a snapshot from 10s to 200s, and measure
how long the file system becomes full. The results are shown
in Figure 7. Observe that as snapshot are created with longer
and longer intervals, it takes considerably longer time for the
file system (with a capacity of 512K bytes) to be full. Given
the long time to fill the file system, the evaluation results
demonstrate the practical value of the r-kernel system.

Another issue we are interested in is the increase of memory
footprint of applications with snapshot functionality included.
Figure 10 shows the evaluation results. In this experiment, we
continue to use the five benchmark applications, where we
compile them with and without having one snapshot/rollback
(denoted as S/R) pair in the main program. Both the code
size and the RAM usage (only static RAM is considered
as dynamic stack usage will change over the execution of
a program). The code size and RAM usage of the snapshot
thread is also shown in this table. Observe that the increase
for memory footprint is much smaller for larger applications
(e.g., flooding) than for smaller applications (e.g. blink).
The reason is intuitive: the additional overhead brought by
the inclusion of snapshot functionality is almost constant.
Therefore, its impact is much smaller when the original
program has a larger footprint.

Besides the delays for typical operations, we also measure
a reference timeline for snapshot (the timeline for rollback
is similar), using the blink application as an example. The
purpose of this measurement is motivated by the message-
passing nature of our implementation: we want to demonstrate
that such an architecture does not cause too much additional
delays. Practically, when a snapshot is to be made, the user
thread (blink) sends a message to the snapshot thread, which
is then waken up, parses the message content, looks up
the information of the thread that sent this message, and
performs the snapshot/rollback operations accordingly. Again,
this timeline is measured based on the cycle-accurate timer on
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MicaZ nodes. The results are illustrated in Figure 9. Observe
that in this figure, the primary time delays are caused by
creating a snapshot image in the file system.

In our next experiment, we evaluate the slowdown of appli-
cations with context switch logging, a crucial component of the
past-run trace reconstruction. Figure 10 shows the performance
results. In this experiment, we use a modified version of the
Blink application, where we insert a large amount of extra
computation into the main loop for experimental purpose. We
test with both low computational load (denoted as L) and
high computational load (denoted as H). with different number
of context switches per second. As observed in this figure,
logging context switch sequences into EEPROM adds consid-
erable overhead compared to normal execution of programs.
The overhead, we argue, is tolerable: even for 40 context
switches to be recorded per second with a high computational
load, the CPU usage increases from around 37% to 70%, still
acceptable for the application.

Finally, we evaluate the performance of snapshot/rollback
commands, which are implemented in the LiteOS shell, com-
pared to other old commands provided by LiteOS. Figure 11
shows the comparison results. As illustrated, the typical delays
in invoking snapshot/rollback commands are comparable with
those such as file system operations (ls), breakpoint creation
(break), or process operations (ps). Therefore, these com-
mands provide convenient ways to users to interact with r-
kernel when needed.

VI. RELATED WORK

How to guarantee software robustness has been extensively
studied in the literature for traditional platforms such as com-
modity PCs, server systems, and high-performance computing.
Several studies indicate that various bugs can be effectively
resolved by rebooting [11]. Not surprisingly, rebooting is
costly in both time and energy. More recently, two techniques
have been presented to improve the performance compared to
whole-system rebooting. The first technique is microreboot-
ing [5], [6], which is a fine-grained technique for surgically
recovering faulty application components without disturbing
the rest of the application. Microrebooting is evaluated in an
Internet auction system running on an application server. It
is demonstrated that microreboots recover most of the same
failures as full reboots, but do so an order of magnitude faster
and result in an order of magnitude less overhead. Some
work, such as shadow driver [22], further tries to conceal
the recovery process from users to create more robust device
drivers. The second technique is based on a checkpoint-
rollback mechanism [2], [19], [20], [24]. These mechanisms
share in common that they create checkpoints for running pro-
grams, and perform rollback operations to these programs later
when bugs appear. Some of these techniques also try to address
deterministic bugs. For example, progress retry [24] recorders
messages to increase the degree of non-determinism. Recovery
blocks [20] rely on different implementation versions during
rollback to avoid deterministic failures. Rx [19] relies on OS-
supported mechanisms to create non-determinism artificially to
avoid deterministic bugs. These previous methods, however,
are developed for conventional computing platforms where
computational and storage resources are much more redundant.
They do not consider the unique requirements on resource
concerns, operating system designs, application properties that
are unique to resource-constrained networked embedded sys-
tems. Therefore, such mechanisms have to be fundamentally
redesigned for networked embedded systems.

In resource-constrained embedded systems such as sensor
networks, the most commonly followed approach to improve
system robustness has been debugging. Specifically, a wide
range of tools have been developed. These approaches include
source level debuggers such as AVR JTAG [3] and Clairvoy-
ant [25], simulators such as EmStar [10], Avrora [23], and
TOSSIM [14], dynamic instrumentation based methods such
as declarative tracepoints [8], and record and replay methods
such as EnviroLog [17]. Among these approaches, EnviroLog
is remotely similar to our work since it also exploits the use
of checkpoints. However, EnviroLog does not support rollback
operations. Instead, it focuses on replaying environmental
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input to re-trigger the same bug in consecutive runs.
Despite these debugging methods, due to the tight inte-

gration of software modules and close interacting with the
physical world, guaranteeing the correctness of software on
embedded platforms remains an extremely challenging task.
Consequently, runtime robustness has recently drawn more
attention. To our best knowledge, the only work that aims to
provide runtime robustness for networked embedded systems
through reboots is Neutron [9], which is a version of the
TinyOS operating system that efficiently recovers from mem-
ory safety bugs. Specifically, Neutron reboots the so-called
recovery units, which are loosely mapped to threads, and then
recovers precious state across such reboots. In this sense,
Neutron is most similar to Microreboot, while in contrast, our
approach pursues exploiting checkpoint and rollback. Another
key difference between our work and Neutron is that after
rollback, we exploit system calls to provide a shadow execu-
tion environment to threads. Therefore, our approach allows
recovering from certain deterministic bugs, while previous
methods like Neutron could not.

VII. CONCLUSION

In this paper, we have described our design, implementation,
and evaluation of r-kernel, which runs on the MicaZ platform
and combines multiple techniques including snapshot/rollback,
system call shadowing, and past-run trace reconstruction. Our
results are positive: through our experiments, we conclude
that r-kernel can be implemented with acceptable overhead
on resource-constrained embedded platforms such as MicaZ
nodes. In the future, we plan to further investigate the potential
of r-kernel through large-scale applications, and report the
results in our future work.
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